
ACHRcu Documentation
Release 0.1

Marouen Ben Guebila

May 28, 2019

Contents

1 General approach and parallel construct 3

2 Contents 5
2.1 Installation guide . 5
2.2 Usage guide . 7
2.3 Tutorials . 8
2.4 Changelog . 9
2.5 License . 9

3 Indices and tables 11

i

ii

ACHRcu Documentation, Release 0.1

ACHR.cu is a CUDA implementation of the sampling algorithm Artificially Centered Hit-and-Run (ACHR) for the
analysis of metabolic models. Metabolic models are mathematical representations of biological organisms forumlated
as linear programs. Popular metabolic modeling tools like Flux Balance Analysis (FBA) assume an objective function
that the organism optimizes for. When it is not obvious which objective function the system optimizes for, unbiased
analysis like sampling is a tool of choice. Sampling is an MCMC method that explores the solution space or the set of
possible phenotypes under the linear constraints.

But as metabolic models of biological systems become more complex, the sampling of the solution space of a
metabolic model becomes unfeasible due to the large analysis time. In order to address the large analysis time for
large metabolic models, I implemented a GP-GPU version of ACHR that reduces the sampling time by at least a factor
of 10x for the sampling per se and a factor of 100x for the generation of warmup points which is the preprocessing
step. Here you can find tutorials on the installation and analysis of ACHR.cu sampling software.

Contents 1

ACHRcu Documentation, Release 0.1

2 Contents

CHAPTER 1

General approach and parallel construct

Sampling metabolic models is a two-step process:

1. Generation of warmup points. The generation of p warmup points is basically solving the linear program with
randomly generated coefficient vector c twice as a maximization problem and a minimization problem. The use of a
randomly genrated coefficient vector makes the solution of linear program extremely slow and subject to numerical
instability. Particularly in parallel setting, some cores might get the linear programs that require more time to solve
while others get the easier ones, which can result in an overall slower analysis time. In a previous work, I addressed
a similar question through dynamic load balancing. Briefly, if a worker gets a high computational load then the idle
workers can take up some of that load. Using a dynamically load balanced generation of warmup points software, the
speed up achieved is at least a 100x.

2. The actual sampling using the warmup points as a starting point. With the warmup points at hand, we can proceed to
the actual sampling using a cuda implementation. The architecture uses the modern specs of Nvidia cards to perform
dynamic parallelism . In fact, there will be p random starting points at the same time (first level of parallelism) that
will each launch n random chains to sample the solution space. This procedure is repeated a number of times taking
each time a new starting point and saving the sampled points. In particular each chain will sample the local space close
to its starting point, which could improve the convergence of the algorithm and avoid the blocking of the sampling
chain in the corners of the flux cone. Additionally, the provided computational power will allow the user to sample a
greater number of points which can greatly help the assessement of the uniform representation of the solution space
and address the sampling of large metabolic models.

3

https://devblogs.nvidia.com/cuda-dynamic-parallelism-api-principles/

ACHRcu Documentation, Release 0.1

4 Chapter 1. General approach and parallel construct

CHAPTER 2

Contents

2.1 Installation guide

Sampling of metabolic models is a two-step process. The first step is the generation of warmup points that will be
used as a startign point for the actual sampling.

2.1.1 Generation of warmup points

To generate warmup points for metabolic models, we will use the VFWarmup tool that uses a hybrid MPI/OpenMP
distributed approach to ensure dynamic load balancing.

Requirements

• Linux-based system

• IBM CPLEX 12.6.3 and above Free academic version

• OpenMp comes by default in the latest gcc versions

• MPI through the OpenMPI 1.10.3 implementation.

Quick install

cd VFWarmup
source ./install.sh
make

5

http://www-03.ibm.com/software/products/fr/ibmilogcpleoptistud

ACHRcu Documentation, Release 0.1

Troubleshooting

Quick install downloads and installs 1) OpenMPI and 2) IBM CPLEX for 64-bit machines.

You can do each step separately if quick install did not work or if you have different machine specs.

• MPI: You can use the following code snippet to install MPI

VERSION=3.1.2
wget --no-check-certificate https://www.open-mpi.org/software/ompi/v3.1/downloads/
→˓openmpi-$VERSION.tar.gz
tar -xzf openmpi-$VERSION.tar.gz
cd openmpi-$VERSION
mkdir build && cd build
../configure CFLAGS="-w" --prefix=$HOME/open-mpi \

--without-verbs --without-fca --without-mxm --without-ucx \
--without-portals4 --without-psm --without-psm2 \
--without-libfabric --without-usnic \
--without-udreg --without-ugni --without-xpmem \
--without-alps --without-munge \
--without-sge --without-loadleveler --without-tm \
--without-lsf --without-slurm \
--without-pvfs2 --without-plfs \
--without-cuda --disable-oshmem \
--disable-mpi-fortran --disable-oshmem-fortran \
--disable-libompitrace \
--disable-mpi-io --disable-io-romio \
--disable-static #--enable-mpi-thread-multiple

make -j2
make install

You might also need to add MPI path

export PATH=$HOME/open-mpi/bin:$PATH

• IBM CPLEX: The recommended approach is to download IBM CPLEX and register for the free academic
version.

Make sure that the CPLEXDIR path in VFWarmup/Makefile corresponds to the installation folder of CPLEX.

• Once the required dependencies installed, cd ACHR.cu/VFWarmup then make at the root of VFWarmup.

• Alternatively, you can open an issue here.

2.1.2 Sampling

The actual sampling uses ACHR.cu and starts from the warmup points generated by VFWarmup. It is a CUDA-based
GP-GPU software.

Requirements

• Linux-based system

• Nvidia GPU with sm_35 architecture. Check the specs of your card here This architecture is needed as ACHR.
cu uses nested parallelism to gain even higher speed-ups.

• CUDA v8.0 and above

• GSL linear algebra library needed for the sequential SVD and QR.

6 Chapter 2. Contents

http://www-03.ibm.com/software/products/fr/ibmilogcpleoptistud
https://github.com/marouenbg/ACHR.cu/issues
https://en.wikipedia.org/wiki/CUDA

ACHRcu Documentation, Release 0.1

• IBM CPLEX 12.6.3 and above

Once the required dependencies installed, make at the root of ACHRcu

Quick install

cd ACHRcu
source ./install.sh
make

Troubleshooting

Quick install downloads and installs 1) CUDA 8.0 for 64 bit machines and 2) GSL.

You can do each step separately if quick install did not work or if you have different machine specs.

• CUDA v 8.0: You can download CUDA here, then follow the instructions for the installation.

You might also need to add CUDA path

export PATH=/usr/local/cuda-8.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH

CUDA v 8.0 and above are required because ACHR.cu enables dynamic parallelism. For CUDA v 8.0, a GCC version
< 5.0 is required.

You can install GCC 4.8 like the following:

sudo apt install gcc-4.8 g++-4.8
sudo ln -s /usr/bin/gcc-4.8 /usr/local/cuda/bin/gcc

You can also install newer CUDA versions that support recent versions of GCC.

• GSL: You can install GSL like the following

sudo apt-get install libgsl-dev

• IBM CPLEX: check the installation of VFWarmup for the download and install of IBM CPLEX.

Make sure that the CPLEXDIR path in ACHRcu/Makefile corresponds to the installation folder of CPLEX.

• Once the required dependencies installed, cd ACHR.cu/ACHRcu then make at the root of ACHRcu.

• Alternatively, you can open an issue here.

2.2 Usage guide

Sampling of metabolic models is a two-step process.

2.2.1 Generation of warmup points

The generation of warmup points is done through VFWarmup software. After installing the dependencies of
VFWarmup, you can build the binaries at the root of VFWarmup using make.

Then call VFWarmup as follows:

2.2. Usage guide 7

https://developer.nvidia.com/cuda-80-ga2-download-archive
https://github.com/marouenbg/ACHR.cu/issues

ACHRcu Documentation, Release 0.1

mpirun -np nCores --bind-to none -x OMP_NUM_THREADS=nThreads createWarmupPts
model.mps SCAIND

Replace the following variables with your own parameters:

• nCores: the number of non-shared memory cores you wish to use for teh analysis

• nThreads: the number of shared memory threads within one core

• model.mps: the metabolic model in .mps format. To convert a model in .mat format to .mps, you can use
the provided converter convertProblem.m

• SCAIND: (optional) corresponds to the scaling CPLEX parameter SCAIND and can take the values 0 (equi-
libration scaling: default), 1(aggressive scaling), -1 (no scaling). scaling is usually desactivated with tightly
constrained metabolic model such as coupled models to avoid numerical instabilities and large solution times.

Example: mpirun -np 2 --bind-to none -x OMP_NUM_THREADS=4 createWarmupPts
ecoli_core.mps

You will have to input the number of warmup points to be generated, this is usually a minimum of 2n, where n is
the number of reactions in a metabolic model. VFWarmup will perform a minimization and a maximization in each
dimension, which means that 2n is the minimum number of samples needed to delienate the solution space.

The ouput file is saved as modelnPtswarmup.csv, with model is the name of the metabolic model and nPts is the
number of warmup points generated.

2.2.2 Sampling

The actual GPU sampling is done through ACHR.cu software. After installing the dependencies of ACHR.cu, you
can build the binaries at the root of ACHR.cu using make.

Then call ACHR.cu as follows:

./ACHRCuda model.mps warmuppoints.csv nFiles nPoints nSteps

Replace the following varaibles with you own parameters:

• model.mps: the metabolic model in .mps format.

• warmuppoints.csv: the warmup points obtained using VFWarmup. You can also use warmup points generated
using other software such as the MATLAB CobraToolbox and Cobrapy.

• nFiles: Number of files to stores the sampled solution points.

• nPoints: number of points per file.

• nSteps: number of steps per point.

Example: ./ACHRCuda ecoli_core.mps ecoli_core1000warmup.csv 1 1000 1000

2.3 Tutorials

First, make sure that VFWarmup and ACHR.cu are correctly installed.

2.3.1 Sampling of Ecoli core

Sampling is a two-step process. First, let’s generate the warmup points for sampling using VFWarmup

mpirun -np 1 --bind-to none -x OMP_NUM_THREADS=4 createWarmupPts ecoli_core.
mps

8 Chapter 2. Contents

ACHRcu Documentation, Release 0.1

Make sur you pick a number of warmup points greater than 95*2=190, say 200 for instance. The output has been
written to ecoli_core200warmup.csv

Then, let’s sample the solution space of Ecoli core metabolic model starting from the warmup points generated previ-
ously:

./ACHRCuda model.mps ecoli_core200warmup.csv 2 1000 1000

We will generate 2 files contatining each 1000 points. Each points has converged after 1000 step. The total number of
points generated is 2*1000=2000.

2.4 Changelog

• : Improve the docs

• : Changelog added to the doc

• : Added quick install script

• : Improve the changelog structure

2.5 License

The software is provided under MIT License.

MIT License

Copyright (c) 2018 Ben Guebila Marouen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

2.4. Changelog 9

ACHRcu Documentation, Release 0.1

10 Chapter 2. Contents

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

11

	General approach and parallel construct
	Contents
	Installation guide
	Usage guide
	Tutorials
	Changelog
	License

	Indices and tables

