

AbTools: Utilities for antibody sequence analysis

AbTools provides core data structures and methods for analysis of
antibody repertoire data. Tools for manipulating sequences, pairwise
and multiple sequence alignment and sequence clustering are included.

Additionally, AbTools provides utilities for secondary analysis of
antibody sequence data. Error correction, mining NGS datasets for sequences
with similarity to known antibody sequences, generating lineage phylogenies,
and making repertoire-level comparisons are all covered.

Getting Started

	Install

Commandline Use

	AbCompare

	AbCorrect

	AbFinder

	AbPhylogeny

API

	API Examples

	API Reference

About

	License

	News

Related Projects

	AbStar [https://github.com/briney/abstar]

	AbCloud [https://github.com/briney/abcloud]

	Clonify [https://github.com/briney/clonify-python]

Index

	Module Index

	Search Page

Install

The easiest way to install AbTools locally (on OSX or Linux) is to use pip:

$ pip install abtools

If you don’t have pip, the Anaconda [https://www.continuum.io/downloads] Python distribution contains pip along
with a ton of useful scientific Python packages and is a great way to get
started with Python.

AbTools does not run natively on Windows, but Windows users can run AbTools with
Docker [https://www.docker.com/] (AbTools is included in the AbStar Docker image):

$ docker pull briney/abstar
$ docker run -it briney/abstar

Stable [https://github.com/briney/abstar/releases] and development [https://github.com/briney/abstar] versions of AbTools can also be downloaded from Github.
You can manually install the latest development version of AbTools with:

$ git clone https://github.com/briney/abtools
$ cd abtools/
$ python setup.py install

Note

If installing manually via setup.py and you don’t already have scikit-bio installed,
you may get an error when setuptools attempts to install scikit-bio. This can be fixed
by first installing scikit-bio with pip:

$ pip install scikit-bio

and then retrying the manual install of AbTools.

Requirements

	Python 2.7.x (Python 3 compatability is in the works)

	biopython [http://biopython.org/]

	celery [http://www.celeryproject.org/]

	ete2 [http://etetoolkit.org/]

	matplotlib [http://matplotlib.org/]

	pandas [http://pandas.pydata.org/]

	pymongo [https://api.mongodb.org/python/current/]

	scikit bio [http://scikit-bio.org/]

	seaborn [https://stanford.edu/~mwaskom/software/seaborn/]

Additional dependencies

Several AbTools components have additional non-Python dependencies:

	abtools.alignment requires MAFFT [http://mafft.cbrc.jp/alignment/software/] and MUSCLE [http://www.drive5.com/muscle/]

	abtools.correct requires CDHIT [http://weizhongli-lab.org/cd-hit/] and USEARCH [http://www.drive5.com/usearch/]

	abtools.mongodb requires MongoDB [https://www.mongodb.org/]

	abtools.phylogeny requires MUSCLE [http://www.drive5.com/muscle/] and FastTree [http://meta.microbesonline.org/fasttree/]

	abtools.s3 requires s3cmd [http://s3tools.org/s3cmd]

If using Docker, all of the the non-Python dependencies are included.

AbCompare

Overview

AbCompare is used to perform repertoire-level comparison of antibody
sequence data using a variety of similarity and divergence measures.
Currently, AbCompare compares samples using the frequency of V-gene
use, although other comparison types (such as clonality) are planned.
However, the underlying similarity and divergence functions are accessible
via the AbTools API, so you can compare samples using other characteristics.

Similarity (or divergence) scores are computed by subsampling each dataset
and computing the score for the subsamples. This process is repeated many
times, and the median score for all of the iterations is returned. In addition
to producing a more accurate representation of the true score, it also makes
is possible to directly compare datasets of different sizes.

Examples

To compute the Marisita-Horn similarity of two collections, both in
the same MongoDB database:

$ abcompare -d MyDatabase -1 Collection1 -2 Collection2 -o /path/to/output/

If only one collection is provided (via -1), then that collection will
be iteratively compared to all other collections in the database:

$ abcompare -d MyDatabase -1 Collection1 -o /path/to/output/

If you leave out collections entirely, all collections in the database will be
iteratively compared to all other collections:

$ abcompare -d MyDatabase -o /path/to/output/

Finally, if you’d like to compare only those collections that share a common
prefix (for example, if your collection names are formatted as SubjectName_Timepoint
and you’d like to compare all the timepoints from a single subject):

$ abcompare -d MyDatabase --collection-prefix SubjectName -o /path/to/output/

The default comparison method is Marisita-Horn similiarity, but several other
methods are provided:

	Marisita-Horn similarity [https://en.wikipedia.org/wiki/Morisita%27s_overlap_index] ('marisita-horn')

	Kullback-Leibler divergence [https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence] ('kullback-leibler')

	Jensen-Shannon similarity [https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence] ('jensen-shannon')

	Jaccard similarity [https://en.wikipedia.org/wiki/Jaccard_index] ('jaccard')

	Bray-Curtis similarity [https://en.wikipedia.org/wiki/Bray%E2%80%93Curtis_dissimilarity] ('bray-curtis')

	Renkonen similarity [https://en.wikipedia.org/wiki/Renkonen_similarity_index] ('renkonen')

	Cosine similarity [https://en.wikipedia.org/wiki/Cosine_similarity] ('cosine')

To use an alternate comparison method, pass the method with the --method option:

$ abcompare -d MyDatabase -o /path/to/output/ --method jaccard

The number of sequences used in each iteration (--chunksize, default is 100,000) and the
number of iterations (--iterations, default is 10,000) can also be changed:

$ abcompare -d MyDatabase -o /path/to/output --iterations 1000 --chunksize 25000

As with other AbTools applications, there are options for connecting to remote MongoDB
servers (--ip and --port) and MongoDB authentication (--user and --password).
A complete list of AbCompare options can be obtained by:

$ abcompare --help

AbCorrect

Overview

AbCorrect is a full-featured utility for performing error-correction
on antibody repertoire sequencing data. Error correction can be performed
using Unique Antibody IDs (UAIDs; also known as molecular barcodes) or
by identity clustering.

The AbCorrect command-line application is designed to work with antibody
sequence data that has already been annotated with AbStar [https://github.com/briney/abstar/]. Although other
error correction tools for antibody repertoire sequencing operate on
raw data (or, in the case
of paired reads, on raw data after read merging), we have found
that annotating the sequences with AbStar before error correction allows us to focus clustering
and consensus/centroid generation on just the VDJ region of the antibody sequence
in the proper orientation. In our hands, this tends to produce more accurate,
reproducible results.

In addition to being provided as a command-line application, the core
functionality can be accessed through the AbTools API,
which allows AbCorrect to be integrated into more sophisticated sequence
processing pipelines. Below are several examples showing how to use AbCorrect
as a command-line application.

Examples

The simplest use case for AbCorrect is to perform error correction on a single
JSON file, which is the output from running AbStar on a single FASTA/Q file:

$ abcorrect -j /path/to/MyData.json -t /path/to/temp/ -o /path/to/output/

This will cluster sequences based on UAIDs (which have been pre-parsed by AbStar)
and generate a ‘consensus’ sequence for each UAID cluster containing at least one
sequence (‘consensus’ is in quotes because it isn’t truly a consensus for UAID bins
with a single sequence). Output will be a single FASTA file of error-corrected sequences,
located at /path/to/output/MyData.fasta.

To perform the same operation, but only calculate consensus sequences for UAID
clusters with at least 3 sequences:

$ abcorrect -j /path/to/MyData.json -t /path/to/temp/ -o /path/to/output/ --min 3

If you want to correct errors using UAIDs but you forgot to have AbStar parse them,
you can have AbCorrect parse them by passing the length of the barcode (in
nucleotides):

$ abcorrect -j /path/to/MyData.json -t /path/to/temp/ -o /path/to/output/ --parse-uaids 20 --min 3

This will use the first 20nt of the raw merged read as the UAID. If the UAID is at the end
of the read (for paired reads, this would be the start of R2), use a negative number for
--parse-uaids.

To cover the relatively rare case (assuming the UAID length was selected appropriately) where two
sequences were tagged with the same barcode, AbCorrect clusters the sequences within each
UAID bin and builds a consensus/centroid sequence for each subcluster that passes the
--min size threshold. To disable this, you can pass the --largest-cluster-only option
and AbCorrect will only build a consensus/centroid sequence for the largest cluster within
each UAID bin.

To perform error-correction using identity clustering instead of UAIDs, you can:

$ abcorrect -j /path/to/MyData.json -t /path/to/temp/ -o /path/to/output/ --no-uaids

This will cluster the sequences at an identity threshold (default is 0.975, or 97.5% identity)
and build a consensus sequemce for each cluster. To cluster with a threshold of 0.96 instead:

$ abcorrect -j /path/to/MyData.json -t /path/to/temp/ -o /path/to/output/ -I 0.96 --no-uaids

If you have more than one JSON file to be processed, you can pass AbCorrect a directory
that contains one or more JSON files and each JSON file will be iteratively processed:

$ abcorrect -j /path/to/JSONs/ -t /path/to/temp/ -o /path/to/output/

All of the other options (such as the minimum number of sequences for consensus/centroid
calculation) remain, although there is currently no way to specifiy different options
for each JSON file.

If your AbStar-annotated sequences have already been uploaded to MongoDB, you can still
use AbCorrect to perform error correction. Rather than passing JSON files with -j, you can
pass a MongoDB database name with -d and a collection name with -c:

$ abcorrect -d MyDatabase -c MyCollection -t /path/to/temp/ -o /path/to/output/

If you supply just the database name (without a collection), AbCorrect will iteratively process
all collections in the supplied database:

$ abcorrect -d MyDatabase -t /path/to/temp/ -o /path/to/output/

The above example is querying MyDatabase on your local instance of MongoDB. To do the same
thing on a remote MongoDB server, you can pass the IP address with -i (assuming the
default port of 27017:

$ abcorrect -d MyDatabase -i 123.45.67.89 -t /path/to/temp/ -o /path/to/output/

If your MongoDB server uses a port other than 27017, you can provide it using the --port
option. And if your remote MongoDB server requires authentication, you can supply the username with
--user and the password with --password. If you don’t supply both --user and
--password, AbCorrect will attempt to connect to the MongoDB database without authentication.

Finally, to make non-redundant set of sequences, AbCorrect provides the --nr option:

$ abcorrect -d MyDatabase -t /path/to/temp/ -o /path/to/output/ --nr

This uses sort | uniq, which is much faster than clustering at 100% identity with CD-HIT.

Warning

Using --nr is is not the same as clustering at 100% identity. Two sequences that are
different lengths but are otherwise identical will be collapsed when clustering with CD-HIT
but will not be collapsed when using sort | uniq.

AbFinder

Overview

AbFinder provides methods to mine large datasets of antibody sequences
to rapidly identify sequences with high identity to known antibody
sequences.

Given a MongoDB database and collection, AbFinder computes identity
between one or more ‘standard’ sequences and all seqeunces in the collection.
Default output is an identity/divergence plot, a hexbin plot of germline
identity (X-axis) and identity to the standard sequence (Y-axis). AbFinder
also updates MongoDB with identity information so that standard identities
can be used in subsequent queries.

Examples

To run, AbFinder needs a MongoDB database and collection, an output directory,
and a FASTA-formatted file of standard sequences:

$ abfinder -d MyDatabase -c MyCollection -s standards.fasta -o /path/to/output/

Omitting the collection results in AbFinder iteratively processing each collection
in the database. By default, AbFinder assumes that the standard file contains
amino acid sequences. If you would like to compute nucleotide identity instead,
you can indicate your preference with the --nucleotide option:

$ abfinder -d MyDatabase -s standards.fasta -o /path/to/output/ --nucleotide

AbFinder also assumes that the standard file contains heavy chain sequences, and only
heavy chain sequences from MongoDB will be used for comparison. To compare sequences
of a different chain (options are 'heavy', 'kappa', and 'lambda'), use
the --chain option:

$ abfinder -d MyDatabase -s standards.fasta -o /path/to/output/ --chain kappa

If you do not plan on using the identity scores for any sort of downstream analysis,
you can save some time and skip the MongoDB updates and just make the identity/divergence
figures:

$ abfinder -d MyDatabase -s standards.fasta -o /path/to/output/ --no-update

There are several other options, mainly related to formatting the identity/divergence
figures. A complete list of all options can be obtained with:

$ abfinder --help

AbPhylogeny

Overview

AbPhylogeny generates figure-quality phylogenetic trees from antibody sequence data.
Designed with the ability to color individual sequences by attribute, phylogenetic
trees can be drawn that accurately represent data from longitugindal samplings,
different sampling locations (peripheral blood, bone marrow, FNA, etc), or
categorical genetic characteristics like isotype.

AbPhylogeny can take input on any of three levels:

	FASTA-formatted sequence files

	FASTA-formatted multiple sequence alignment

	Newick-formatted tree file

If given sequence files, AbPhylogeny will perform multiple sequence alignment with
MUSCLE, build a tree file from the alignment with FastTree, and draw the tree figure.
If given an alignment, AbPhylogeny will build the tree file and draw the figure. If
given a tree file, AbPhylogeny will simply draw the figure. In each case, AbPhylogeny
will save all intermediate files to the output directory, so intermediates can be used
to speed up multiple iterations on the same figure. This is especially helpful when
trying multiple variations (colors, fontsizes, etc) of the same figure.

Examples

API Examples

API Reference

Core Utilities

	abtools.alignment: Pairwise and Multiple Sequence Alignment

	abtools.cluster: Sequence Clustering

	abtools.log: Logging

	abtools.pipeline: Utilities for building pipelines of AbTools functions

	abtools.s3: Backup data to S3

	abtools.sequence: Sequence utilities

Secondary Annotation

	abtools.compare: Repertoire-level comparison

	abtools.correct: PCR and sequencing error correction

	abtools.finder: Mine NGS datasets for similarity to known mAbs

	abtools.phylogeny: Phylogenetic analysis of antibody lineages

abtools.alignment: Pairwise and Multiple Sequence Alignment

	
abtools.alignment.mafft(sequences=None, alignment_file=None, fasta=None, fmt='fasta', threads=-1, as_file=False, print_stdout=False, print_stderr=False)

	Performs multiple sequence alignment with MAFFT.

MAFFT is a required dependency.

	Parameters

	
	sequences (list) – Sequences to be aligned. sequences can be one of four things:

	a FASTA-formatted string

	a list of BioPython SeqRecord objects

	a list of AbTools Sequence objects

	a list of lists/tuples, of the format [sequence_id, sequence]

	alignment_file (str) – Path for the output alignment file. If not supplied,
a name will be generated using tempfile.NamedTemporaryFile().

	fasta (str) – Path to a FASTA-formatted file of sequences. Used as an
alternative to sequences when suppling a FASTA file.

	fmt (str) – Format of the alignment. Options are ‘fasta’ and ‘clustal’. Default
is ‘fasta’.

	threads (int) – Number of threads for MAFFT to use. Default is -1, which
results in MAFFT using multiprocessing.cpu_count() threads.

	as_file (bool) – If True, returns a path to the alignment file. If False,
returns a BioPython MultipleSeqAlignment object (obtained by calling
Bio.AlignIO.read() on the alignment file).

	Returns

	
	Returns a BioPython MultipleSeqAlignment object, unless as_file is True,

	in which case the path to the alignment file is returned.

	
abtools.alignment.muscle(sequences=None, alignment_file=None, fasta=None, fmt='fasta', as_file=False, maxiters=None, diags=False, gap_open=None, gap_extend=None)

	Performs multiple sequence alignment with MUSCLE.

MUSCLE is a required dependency.

	Parameters

	
	sequences (list) – Sequences to be aligned. sequences can be one of four things:

	a FASTA-formatted string

	a list of BioPython SeqRecord objects

	a list of AbTools Sequence objects

	a list of lists/tuples, of the format [sequence_id, sequence]

	alignment_file (str) – Path for the output alignment file. If not supplied,
a name will be generated using tempfile.NamedTemporaryFile().

	fasta (str) – Path to a FASTA-formatted file of sequences. Used as an
alternative to sequences when suppling a FASTA file.

	fmt (str) – Format of the alignment. Options are ‘fasta’ and ‘clustal’. Default
is ‘fasta’.

	threads (int) – Number of threads for MAFFT to use. Default is -1, which
results in MAFFT using multiprocessing.cpu_count() threads.

	as_file (bool) – If True, returns a path to the alignment file. If False,
returns a BioPython MultipleSeqAlignment object (obtained by calling
Bio.AlignIO.read() on the alignment file).

	maxiters (int) – Passed directly to MUSCLE using the -maxiters flag.

	diags (int) – Passed directly to MUSCLE using the -diags flag.

	gap_open (float) – Passed directly to MUSCLE using the -gapopen flag. Ignored
if gap_extend is not also provided.

	gap_extend (float) – Passed directly to MUSCLE using the -gapextend flag. Ignored
if gap_open is not also provided.

	Returns

	
	Returns a BioPython MultipleSeqAlignment object, unless as_file is True,

	in which case the path to the alignment file is returned.

	
abtools.alignment.local_alignment(query, target=None, targets=None, match=3, mismatch=-2, gap_open=-5, gap_extend=-2, matrix=None, aa=False, gap_open_penalty=None, gap_extend_penalty=None)

	Striped Smith-Waterman local pairwise alignment.

	Parameters

	
	query – Query sequence. query can be one of four things:

	a nucleotide or amino acid sequence, as a string

	a Biopython SeqRecord object

	an AbTools Sequence object

	a list/tuple of the format [seq_id, sequence]

	target – A single target sequence. target can be anything that
query accepts.

	targets (list) – A list of target sequences, to be proccssed iteratively.
Each element in the targets list can be anything accepted by
query.

	match (int) – Match score. Should be a positive integer. Default is 3.

	mismatch (int) – Mismatch score. Should be a negative integer. Default is -2.

	gap_open (int) – Penalty for opening gaps. Should be a negative integer.
Default is -5.

	gap_extend (int) – Penalty for extending gaps. Should be a negative
integer. Default is -2.

	matrix (str, dict) – Alignment scoring matrix. Two options for passing the
alignment matrix:

	The name of a built-in matrix. Current options are blosum62 and pam250.

	A nested dictionary, giving an alignment score for each residue pair. Should be formatted
such that retrieving the alignment score for A and G is accomplished by:

matrix['A']['G']

	aa (bool) – Must be set to True if aligning amino acid sequences. Default
is False.

	Returns

	If a single target sequence is provided (via target), a single SSWAlignment
object will be returned. If multiple target sequences are supplied (via targets),
a list of SSWAlignment objects will be returned.

	
abtools.alignment.global_alignment(query, target=None, targets=None, match=3, mismatch=-2, gap_open=-5, gap_extend=-2, score_match=None, score_mismatch=None, score_gap_open=None, score_gap_extend=None, matrix=None, aa=False)

	Needleman-Wunch global pairwise alignment.

With global_alignment, you can score an alignment using different
paramaters than were used to compute the alignment. This allows you to
compute pure identity scores (match=1, mismatch=0) on pairs of sequences
for which those alignment parameters would be unsuitable. For example:

seq1 = 'ATGCAGC'
seq2 = 'ATCAAGC'

using identity scoring params (match=1, all penalties are 0) for both alignment
and scoring produces the following alignment:

ATGCA-GC
|| || ||
AT-CAAGC

with an alignment score of 6 and an alignment length of 8 (identity = 75%). But
what if we want to calculate the identity of a gapless alignment? Using:

global_alignment(seq1, seq2,
 gap_open=20,
 score_match=1,
 score_mismatch=0,
 score_gap_open=10,
 score_gap_extend=1)

we get the following alignment:

ATGCAGC
|| |||
ATCAAGC

which has an score of 5 and an alignment length of 7 (identity = 71%). Obviously,
this is an overly simple example (it would be much easier to force gapless alignment
by just iterating over each sequence and counting the matches), but there are several
real-life cases in which different alignment and scoring paramaters are desirable.

	Parameters

	
	query – Query sequence. query can be one of four things:

	a nucleotide or amino acid sequence, as a string

	a Biopython SeqRecord object

	an AbTools Sequence object

	a list/tuple of the format [seq_id, sequence]

	target – A single target sequence. target can be anything that
query accepts.

	targets (list) – A list of target sequences, to be proccssed iteratively.
Each element in the targets list can be anything accepted by
query.

	match (int) – Match score for alignment. Should be a positive integer. Default is 3.

	mismatch (int) – Mismatch score for alignment. Should be a negative integer. Default is -2.

	gap_open (int) – Penalty for opening gaps in alignment. Should be a negative integer.
Default is -5.

	gap_extend (int) – Penalty for extending gaps in alignment. Should be a negative
integer. Default is -2.

	score_match (int) – Match score for scoring the alignment. Should be a positive integer.
Default is to use the score from match or matrix, whichever is provided.

	score_mismatch (int) – Mismatch score for scoring the alignment. Should be a negative
integer. Default is to use the score from mismatch or matrix, whichever
is provided.

	score_gap_open (int) – Gap open penalty for scoring the alignment. Should be a negative
integer. Default is to use gap_open.

	score_gap_extend (int) – Gap extend penalty for scoring the alignment. Should be a negative
integer. Default is to use gap_extend.

	matrix (str, dict) – Alignment scoring matrix. Two options for passing the alignment matrix:

	The name of a built-in matrix. Current options are blosum62 and pam250.

	A nested dictionary, giving an alignment score for each residue pair. Should be
formatted such that retrieving the alignment score for A and G is accomplished by:

matrix['A']['G']

	aa (bool) – Must be set to True if aligning amino acid sequences. Default
is False.

	Returns

	If a single target sequence is provided (via target), a single NWAlignment
object will be returned. If multiple target sequences are supplied (via targets),
a list of NWAlignment objects will be returned.

	
class abtools.alignment.BaseAlignment(query, target, matrix, match, mismatch, gap_open, gap_extend, aa)

	Base class for local and global pairwise alignments.

Note

All comparisons between BaseAlignments
are done on the score attribute (which must be implemented
by any classes that subclass BaseAlignment). This was done
so that sorting alignments like so:

alignments = [list of alignments]
alignments.sort(reverse=True)

results in a sorted list of alignments from the highest alignment
score to the lowest.

	
query

	Sequence – The input query sequence, as an AbTools
Sequence object.

	
target

	Sequence – The input target sequence, as an AbTools
Sequence object.

	
target_id

	str – ID of the target sequence.

	
raw_query

	The raw query, before conversion to a Sequence.

	
raw_target

	The raw target, before conversion to a Sequence.

	
class abtools.alignment.SSWAlignment(query, target, match=3, mismatch=-2, matrix=None, gap_open=5, gap_extend=2, aa=False)

	Structure for performing and analyzing a Smith-Waterman local alignment.

	
alignment_type

	str – Is ‘local’ for all SSWAlignment objects.

	
aligned_query

	str – The aligned query sequence (including gaps).

	
aligned_target

	str – The aligned target sequence (including gaps).

	
alignment_midline

	str – Midline for the aligned sequences, with | indicating
matches and a gap indicating mismatches:

print(aln.aligned_query)
print(aln.alignment_midline)
print(aln.aligned_target)

ATGC
|| |
ATCC

	
score

	int – Alignment score.

	
query_begin

	int – Position in the raw query sequence at which
the optimal alignment begins.

	
query_end

	int – Position in the raw query sequence at which the
optimal alignment ends.

	
target_begin

	int – Position in the raw target sequence at which
the optimal alignment begins.

	
target_end

	int – Position in the raw target sequence at which the
optimal alignment ends.

	
class abtools.alignment.NWAlignment(query, target, match=3, mismatch=-2, gap_open=-5, gap_extend=-2, score_match=None, score_mismatch=None, score_gap_open=None, score_gap_extend=None, matrix=None, aa=False)

	Structure for performing and analyzing a Needleman-Wunch global alignment.

	
alignment_type

	str – Is ‘global’ for all NWAlignment objects.

	
aligned_query

	str – The aligned query sequence (including gaps).

	
aligned_target

	str – The aligned target sequence (including gaps).

	
alignment_midline

	str – Midline for the aligned sequences, with
| indicating matches and a gap indicating mismatches:

print(aln.aligned_query)
print(aln.alignment_midline)
print(aln.aligned_target)

ATGC
|| |
ATCC

	
score

	int – Alignment score.

	
query_begin

	int – Position in the raw query sequence at which
the optimal alignment begins.

	
query_end

	int – Position in the raw query sequence at which the
optimal alignment ends.

	
target_begin

	int – Position in the raw target sequence at which
the optimal alignment begins.

	
target_end

	int – Position in the raw target sequence at which the
optimal alignment ends.

abtools.cluster: Sequence Clustering

	
class abtools.cluster.Cluster(raw_cluster, seq_db=None, db_path=None, seq_dict=None)

	Data and methods for a cluster of sequences.

All public attributes are evaluated lazily, so attributes that
require significant processing time are only computed when needed.
In addition, attributes are only calculated once, so if you
change the Cluster object after accessing attributes, the
attributes will not update. Setters are provided for all attributes,
however, so you can update them manually if necessary:

seqs = [Sequence1, Sequence2, ... SequenceN]
clust = cluster(seqs)

calculate the consensus
consensus = clust.consensus

add sequences to the Cluster
more_sequences = [SequenceA, SequenceB, SequenceC]
clust.sequences += more_sequences

need to recompute the consensus manually
clust.consensus = clust._make_consensus()

	
ids

	list – A list of all sequence IDs in the Cluster

	
size

	int – Number of sequences in the Cluster

	
sequences

	list – A list of all sequences in the Cluster,
as AbTools Sequence objects.

	
consensus

	Sequence – Consensus sequence, calculated by
aligning all sequences with MAFFT and computing the
Bio.Align.AlignInfo.SummaryInfo.gap_consensus()

	
centroid

	Sequence – Centroid sequence, as calculated by
CD-HIT.

	
abtools.cluster.cluster(seqs, threshold=0.975, out_file=None, make_db=True, temp_dir=None, quiet=False, threads=0, return_just_seq_ids=False, max_memory=800, debug=False)

	Perform sequence clustering with CD-HIT.

	Parameters

	
	seqs (list) – An iterable of sequences, in any format that abtools.sequence.Sequence()
can handle

	threshold (float) – Clustering identity threshold. Default is 0.975.

	out_file (str) – Path to the clustering output file. Default is to use
tempfile.NamedTempraryFile to generate an output file name.

	temp_dir (str) – Path to the temporary directory. If not provided, ‘/tmp’ is used.

	make_db (bool) – Whether to build a SQlite database of sequence information. Required
if you want to calculate consensus/centroid sequences for the resulting
clusters or if you need to access the clustered sequences (not just sequence IDs)
Default is True.

	Returns

	A list of Cluster objects, one per cluster.

	Return type

	list

abtools.log: Logging

	
abtools.log.setup_logging(logfile, print_log_location=True, debug=False)

	Set up logging using the built-in logging package.

A stream handler is added to all logs, so that logs at or above
logging.INFO level are printed to screen as well as written
to the log file.

	Parameters

	
	logfile (str) – Path to the log file. If the parent directory
does not exist, it will be created. Required.

	print_log_location (bool) – If True, the log path will be
written to the log upon initialization. Default is True.

	debug (bool) – If true, the log level will be set to logging.DEBUG.
If False, the log level will be set to logging.INFO.
Default is False.

	
abtools.log.get_logger(name=None)

	Get a logging handle.

As with setup_logging, a stream handler is added to the
log handle.

	Parameters

	name (str) – Name of the log handle. Default is None.

abtools.pipeline: Utilities for building pipelines of AbTools functions

	
abtools.pipeline.initialize(log_file, project_dir=None, debug=False)

	Initializes an AbTools pipeline.

Initialization includes printing the AbTools splash, setting up logging,
creating the project directory, and logging both the project directory
and the log location.

	Parameters

	
	log_file (str) – Path to the log file. Required.

	project_dir (str) – Path to the project directory. If not provided,
the project directory won’t be created and the location won’t be logged.

	debug (bool) – If True, the logging level will be set to logging.DEBUG.
Default is FALSE, which logs at logging.INFO.

	Returns

	logger

	
abtools.pipeline.make_dir(d)

	Makes a directory, if it doesn’t already exist.

	Parameters

	d (str) – Path to a directory.

	
abtools.pipeline.list_files(d, extension=None)

	Lists files in a given directory.

	Parameters

	
	d (str) – Path to a directory.

	extension (str) – If supplied, only files that contain the
specificied extension will be returned. Default is False,
which returns all files in d.

	Returns

	A sorted list of file paths.

	Return type

	list

abtools.s3: Backup data to S3

	
abtools.s3.compress_and_upload(data, compressed_file, s3_path, multipart_chunk_size_mb=500, method='gz', delete=False, access_key=None, secret_key=None)

	Compresses data and uploads to S3.

S3 upload uses s3cmd, so you must either:

	Manually configure s3cmd prior to use (typically using s3cmd --configure).

	Configure s3cmd using s3.configure().

	Pass your access key and secret key to compress_and_upload, which will automatically configure s3cmd.

	Parameters

	
	data – Can be one of three things:

	Path to a single file

	Path to a directory

	A list of one or more paths to files or directories

	compressed_file (str) – Path to the compressed file. Required.

	s3_path (str) – The S3 path, with the filename omitted. The S3 filename
will be the basename of the compressed_file. For example:

compress_and_upload(data='/path/to/data',
 compressed_file='/path/to/compressed.tar.gz',
 s3_path='s3://my_bucket/path/to/')

will result in an uploaded S3 path of s3://my_bucket/path/to/compressed.tar.gz

	method (str) – Compression method. Options are 'gz' (gzip) or 'bz2' (bzip2).
Default is 'gz'.

	delete (bool) – If True, the compressed_file will be deleted after upload
to S3. Default is False.

	access_key (str) – AWS access key.

	secret_key (str) – AWS secret key.

	
abtools.s3.put(f, s3_path, multipart_chunk_size_mb=500, logger=None)

	Uploads a single file to S3, using s3cmd.

	Parameters

	
	f (str) – Path to a single file.

	s3_path (str) – The S3 path, with the filename omitted. The S3 filename
will be the basename of the f. For example:

put(f='/path/to/myfile.tar.gz', s3_path='s3://my_bucket/path/to/')

will result in an uploaded S3 path of s3://my_bucket/path/to/myfile.tar.gz

	
abtools.s3.compress(d, output, compress='gz', logger=None)

	Creates a compressed/uncompressed tar file.

	Parameters

	
	d – Can be one of three things:

	the path to a single file, as a string

	the path to a single directory, as a string

	an iterable of file or directory paths

	output (str) – Output file path.

	compress – Compression method. Options are 'gz' (gzip),
'bz2' (bzip2) and 'none' (uncompressed). Default is 'gz'.

	
abtools.s3.configure(access_key=None, secret_key=None, logger=None)

	Configures s3cmd prior to first use.

If no arguments are provided, you will be prompted to enter
the access key and secret key interactively.

	Parameters

	
	access_key (str) – AWS access key

	secret_key (str) – AWS secret key

abtools.sequence: Sequence utilities

	
class abtools.sequence.Sequence(seq, id=None, qual=None, id_key='seq_id', seq_key='vdj_nt')

	Container for biological (RNA and DNA) sequences.

seq can be one of several things:

	a raw sequence, as a string

	an iterable, formatted as [seq_id, sequence]

	a dict, containing at least the ID (default key = ‘seq_id’) and a
sequence (default key = ‘vdj_nt’). Alternate id_key and seq_key
can be provided at instantiation.

	a Biopython SeqRecord object

	an AbTools Sequence object

If seq is provided as a string, the sequence ID can optionally be
provided via id. If seq is a string and id is not provided,
a random sequence ID will be generated with uuid.uuid4().

Quality scores can be supplied with qual or as part of a SeqRecord object.
If providing both a SeqRecord object with quality scores and quality scores
via qual, the qual scores will override the SeqRecord quality scores.

If seq is a dictionary, typically the result of a MongoDB query, the dictionary
can be accessed directly from the Sequence instance. To retrive the value
for 'junc_aa' in the instantiating dictionary, you would simply:

s = Sequence(dict)
junc = s['junc_aa']

If seq is a dictionary, an optional id_key and seq_key can be provided,
which tells the Sequence object which field to use to populate Sequence.id and
Sequence.sequence. Defaults are id_key='seq_id' and seq_key='vdj_nt'.

Alternately, the __getitem__() interface can be used to obtain a slice from the
sequence attribute. An example of the distinction:

d = {'name': 'MySequence', 'sequence': 'ATGC'}
seq = Sequence(d, id_key='name', seq_key='sequence')

seq['name'] # 'MySequence'
seq[:2] # 'AT'

If the Sequence is instantiated with a dictionary, calls to __contains__() will
return True if the supplied item is a key in the dictionary. In non-dict instantiations,
__contains__() will look in the Sequence.sequence field directly (essentially a
motif search). For example:

dict_seq = Sequence({'seq_id': 'seq1', 'vdj_nt': 'ACGT'})
'seq_id' in dict_seq # TRUE
'ACG' in dict_seq # FALSE

str_seq = Sequence('ACGT', id='seq1')
'seq_id' in str_seq # FALSE
'ACG' in str_seq # TRUE

Note

When comparing Sequence objects, they are comsidered equal only if their
sequences and IDs are identical. This means that two Sequence objects
with identical sequences but without user-supplied IDs won’t be equal,
because their IDs will have been randomly generated.

	
fasta

	str – Returns the sequence, as a FASTA-formatted string

Note: The FASTA string is built using Sequence.id and Sequence.sequence.

	
fastq

	str – Returns the sequence, as a FASTQ-formatted string

If Sequence.qual is None, then None will be returned instead of a
FASTQ string

	
reverse_complement

	str – Returns the reverse complement of Sequence.sequence.

	
region(start=0, end=None)

	Returns a region of Sequence.sequence, in FASTA format.

If called without kwargs, the entire sequence will be returned.

	Parameters

	
	start (int) – Start position of the region to be returned. Default
is 0.

	end (int) – End position of the region to be returned. Negative values
will function as they do when slicing strings.

	Returns

	A region of Sequence.sequence, in FASTA format

	Return type

	str

abtools.compare: Repertoire-level comparison

	
abtools._compare.aggregate(data)

	Counts the number of occurances of each item in ‘data’.

Input
data: a list of values.

Output
a dict of bins and counts.

	
abtools._compare.mh_similarity(sample1, sample2)

	Calculates the Marista-Horn similarity for two samples.

	Parameters

	
	sample1 – list of frequencies for sample 1

	sample2 – list of frequencies for sample 2

	Returns

	Marista-Horn similarity (between 0 and 1)

	Return type

	float

	
abtools._compare.kl_divergence(s1, s2)

	Calculates the Kullback-Leibler divergence for two samples.

	Parameters

	
	sample1 – probability distribution for sample 1

	sample2 – probability distribution for sample 2

	Returns

	Kullbeck-Leibler similarity

	Return type

	float

	
abtools._compare.js_similarity(s1, s2)

	Calculates the Jensen-Shannon similarity for two samples.

	Parameters

	
	sample1 – probability distribution for sample 1

	sample2 – probability distribution for sample 2

	Returns

	Jensen-Shannon similarity (between 0 and 1)

	Return type

	float

	
abtools._compare.shannon_entropy(prob_dist)

	Calculates the Shannon entropy for a single probability distribution.

	Parameters

	prob_dist – probability distribution, must sum to 1

	Returns

	Shannon entropy

	Return type

	float

	
abtools._compare.jaccard_similarity(s1, s2)

	Calculates the Jaccard similarity for two samples.

	Parameters

	
	sample1 – list of frequencies for sample 1

	sample2 – list of frequencies for sample 2

	Returns

	Jaccard similarity (between 0 and 1)

	Return type

	float

	
abtools._compare.renkonen_similarity(s1, s2)

	Calculates the Renkonen similarity (also known as the
percentage similarity) for two samples.

	Parameters

	
	s1 – probability distribution for sample 1

	s2 – probability distribution for sample 2

	Returns

	Renkonen similarity (between 0 and 1)

	Return type

	float

	
abtools._compare.bc_similarity(s1, s2)

	Calculates the Bray-Curtis similarity for two samples.

	Parameters

	
	s1 – probability distribution for sample 1

	s2 – probability distribution for sample 2

	Returns

	Bray-Curtis similarity (between 0 and 1)

	Return type

	float

	
abtools._compare.cosine_similarity(s1, s2)

	Calculates the cosine (angular) similarity for two samples.

	Parameters

	
	s1 – list of frequencies for sample 1

	s2 – list of frequencies for sample 2

	Returns

	Cosine similarity (between 0 and 1)

	Return type

	float

	
abtools._compare.sd_similarity(s1, s2)

	Calculates the Brey-Curtis similarity for two samples.

	Parameters

	
	s1 – list of frequencies for sample 1

	s2 – list of frequencies for sample 2

Results:

float: Brey-Curtis similarity (between 0 and 1)

	
abtools._compare.run(**kwargs)

	Performs repertoire-level comparison of antibody sequencing datasets.

Currently, the only metric for comparison is V-gene usage frequency. Additional measures
are in the works (such as comparisons based on clonality).

	Parameters

	
	db (str) – MongoDB database name.

	collection1 (str) – Name of the first MongoDB collection to query for comparison.
If both collection1 and collection2 are provided, collection1 will
be compared only to collection2.
If neither collection1 nor collection2 are provided, all collections in
db will be processed iteratively (all pairwise comparisons will be made).
If collection1 is provided but collection2 is not, collection1 will
be iteratively compared to all other collections in db.

	collection2 (str) – Name of the second MongoDB collection to query for comparison.
If both collection1 and collection2 are provided, collection1 will
be compared only to collection2.
If neither collection1 nor collection2 are provided, all collections in
db will be processed iteratively (all pairwise comparisons will be made).

	collection_prefix (str) – All collections beginning with collection_prefix will
be iteratively compared (all pairwise comparisons will be made).

	ip (str) – IP address of the MongoDB server. Default is localhost.

	port (int) – Port of the MongoDB server. Default is 27017.

	user (str) – Username with which to connect to the MongoDB database. If either
of user or password is not provided, the connection to the MongoDB
database will be attempted without authentication.

	password (str) – Password with which to connect to the MongoDB database. If either
of user or password is not provided, the connection to the MongoDB
database will be attempted without authentication.

	chunksize (int) – Number of sequences for each iteration. Default is 100,000.

	iterations (int) – Number of iterations to perform on each pair of samples.
Default is 10,000

	method (str) – Similarity/divergence method to used for comparison. Default is
marisita-horn. Options are:

	marisita-horn

	kullback-leibler

	jensen-shannon

	jaccard

	bray-curtis

	renkonen

	cosine

	control_similarity (bool) – If True, control similarity/divergence will be
calculated, in which each sample is also compared to itself. Default is False.

	chain (str) – Antibody chain to be used for comparison. Options are heavy, kappa
and lambda. Default is heavy.

abtools.correct: PCR and sequencing error correction

abtools.finder: Mine NGS datasets for similarity to known mAbs

	
abtools._finder.chunker(l, n)

	Generator that produces n-length chunks from iterable l.

	
abtools._finder.run(**kwargs)

	Mines NGS datasets for identity to known antibody sequences.

All of db, output, temp and standard are required.

	Parameters

	
	db (str) – Name of a MongoDB database to query.

	collection (str) – Name of a MongoDB collection. If not provided, all collections
in db will be processed iteratively.

	output_dir (str) – Path to the output directory, into which identity/divergence
figures will be deposited.

	temp_dir (str) – Path to a temporary directory.

	log (str) – Path to a log file. If not provided, log information will not be retained.

	ip (str) – IP address of the MongoDB server. Default is localhost.

	port (str) – Port of the MongoDB server. Default is 27017.

	user (str) – Username with which to connect to the MongoDB database. If either
of user or password is not provided, the connection to the MongoDB
database will be attempted without authentication.

	password (str) – Password with which to connect to the MongoDB database. If either
of user or password is not provided, the connection to the MongoDB
database will be attempted without authentication.

	standard (path) – Path to a FASTA-formatted file containing one or more ‘standard’
sequences, against which the NGS sequences will be compared.

	chain (str) – Antibody chain. Choices are ‘heavy’, ‘kappa’, ‘lambda’, and ‘light’.
Default is ‘heavy’. Only NGS sequences matching chain (with ‘light’ covering
both ‘kappa’ and ‘lambda’) will be compared to the standard sequences.

	update (bool) – If True, the MongoDB record for each NGS sequence will be updated
with identity information for each standard. If False, the updated is skipped.
Default is True.

	is_aa (bool) – If True, the standard sequences are amino acid sequences. If
False, they are nucleotide seqeunces. Default is False.

	x_min (int) – Minimum x-axis value on identity/divergence plots.

	x_max (int) – Maximum x-axis value on identity/divergence plots.

	y_min (int) – Minimum y-axis value on identity/divergence plots.

	y_max (int) – Maximum y-axis value on identity/divergence plots.

	gridsize (int) – Relative size of hexbin grids.

	mincount (int) – Minimum number of sequences in a hexbin for the bin to be colored.
Default is 3.

	colormap (str, colormap) – Colormap to be used for identity/divergence plots.
Default is Blues.

	debug (bool) – If True, more verbose logging.

abtools.phylogeny: Phylogenetic analysis of antibody lineages

	
abtools._phylogeny.run(**kwargs)

	Builds a phylogenetic representation of antibody sequences.

output is required, as well as one of input, alignment or newick.

	Parameters

	
	input (str) – Can be one of three things:

	Path to a FASTA-formatted file containing input sequences.

	A list of AbTools Sequence objects.

	A list of dictionaries, containing at minimum name_key and seq_key.

	output (str) – Path to the output directory, into which tree images and
all intermediate files will be deposited.

	root (str) – Path to a FASTA-formatted file containing a single sequence
which will be used to root the tree. If not provided, tree will be unrooted.

	mabs (str) – Path to a FASTA-formatted file containing mAb sequences. If supplying
both mAb sequences and NGS sequences, passing the mAb sequences separately
allows you to modify their representation separately (for example, show sequence
IDs for just the mAb sequences).

	alignment (str) – Path to a multiple sequence alignment, in FASTA format. If sequences
are already aligned, this will save some computational time since the alignment
will not be redone.

	newick (str) – Path to a tree file, in Newick format. As with alignment, this is
primarily to save computational time if the tree file has already been generated.

	name_key (str) – If input is a list of Sequence objects or dicts, this key will be
used to find the sequence ID. Default is seq_id.

	sequence_key (str) – If input is a list of Sequence objects or dicts, this key will be
used to find the sequence. Default is vdj_nt.

	timepoints (str) – Path to a Tab-delimited file, of the following format (one per line):

TimepointName TimepointOrder TimepointColor

TimepointName should prepended to the sequences in the input file (separated by delimiter).

TimepointOrder is an integer that indicates the order in which the timepoints should be sorted.

TimepointColor is a hex value that will be used to color the phylogenetic tree.
If mAb sequences are provided, the ‘mab’ TimepointName will be used to sort/color the mAb sequences.
If not provided, colors will be automatically selected and timepoints will be determined by a simple
sort of the raw timepoint values parsed from the input file.

	is_aa (bool) – If True, input sequences will be assumed to be amino acid sequences.
Default is False, which assumes nucleotide sequences.

	delimiter (str) – The delimiter used in sequence IDs to separate the timepoint from
the sequence name. Default is _.

	scale (int) – Horizontal scale of the phylogeny. Default is None, which uses the
default ete2 value.

	branch_vertical_margin (float) – Vertical scale of the phylogeny. Default is None,
which uses the default ete2 value.

	label_nodes (str) – Type of nodes to be labeled. Options are: all, none,
no-root, mab, input, and root.

	label_fontsize (float) – Font size for the node labels.

	tree_orientation (int) – If 0, tree is drawn from left to right. If 1, tree
will be drawn from right to left (mirror). Default is 0.

License

The MIT License (MIT)

Copyright (c) 2016 Bryan Briney

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

News

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 abtools	

 	
 	
 abtools._compare	

 	
 	
 abtools._finder	

 	
 	
 abtools._phylogeny	

 	
 	
 abtools.alignment	

 	
 	
 abtools.cluster	

 	
 	
 abtools.log	

 	
 	
 abtools.mongodb	

 	
 	
 abtools.pipeline	

 	
 	
 abtools.s3	

 	
 	
 abtools.sequence	

Index

 A
 | B
 | C
 | F
 | G
 | I
 | J
 | K
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U

A

 	
 	abtools._compare (module)

 	abtools._finder (module)

 	abtools._phylogeny (module)

 	abtools.alignment (module)

 	abtools.cluster (module)

 	abtools.log (module)

 	abtools.mongodb (module)

 	abtools.pipeline (module)

 	abtools.s3 (module)

 	
 	abtools.sequence (module)

 	aggregate() (in module abtools._compare)

 	aligned_query (abtools.alignment.NWAlignment attribute)

 	(abtools.alignment.SSWAlignment attribute)

 	aligned_target (abtools.alignment.NWAlignment attribute)

 	(abtools.alignment.SSWAlignment attribute)

 	alignment_midline (abtools.alignment.NWAlignment attribute)

 	(abtools.alignment.SSWAlignment attribute)

 	alignment_type (abtools.alignment.NWAlignment attribute)

 	(abtools.alignment.SSWAlignment attribute)

B

 	
 	BaseAlignment (class in abtools.alignment)

 	
 	bc_similarity() (in module abtools._compare)

C

 	
 	centroid (abtools.cluster.Cluster attribute)

 	chunker() (in module abtools._finder)

 	Cluster (class in abtools.cluster)

 	cluster() (in module abtools.cluster)

 	
 	compress() (in module abtools.s3)

 	compress_and_upload() (in module abtools.s3)

 	configure() (in module abtools.s3)

 	consensus (abtools.cluster.Cluster attribute)

 	cosine_similarity() (in module abtools._compare)

F

 	
 	fasta (abtools.sequence.Sequence attribute)

 	
 	fastq (abtools.sequence.Sequence attribute)

G

 	
 	get_collections() (in module abtools.mongodb)

 	get_connection() (in module abtools.mongodb)

 	
 	get_db() (in module abtools.mongodb)

 	get_logger() (in module abtools.log)

 	global_alignment() (in module abtools.alignment)

I

 	
 	ids (abtools.cluster.Cluster attribute)

 	
 	index() (in module abtools.mongodb)

 	initialize() (in module abtools.pipeline)

J

 	
 	jaccard_similarity() (in module abtools._compare)

 	
 	js_similarity() (in module abtools._compare)

K

 	
 	kl_divergence() (in module abtools._compare)

L

 	
 	list_files() (in module abtools.pipeline)

 	
 	local_alignment() (in module abtools.alignment)

M

 	
 	mafft() (in module abtools.alignment)

 	make_dir() (in module abtools.pipeline)

 	
 	mh_similarity() (in module abtools._compare)

 	mongoimport() (in module abtools.mongodb)

 	muscle() (in module abtools.alignment)

N

 	
 	NWAlignment (class in abtools.alignment)

P

 	
 	put() (in module abtools.s3)

Q

 	
 	query (abtools.alignment.BaseAlignment attribute)

 	query_begin (abtools.alignment.NWAlignment attribute)

 	(abtools.alignment.SSWAlignment attribute)

 	
 	query_end (abtools.alignment.NWAlignment attribute)

 	(abtools.alignment.SSWAlignment attribute)

R

 	
 	raw_query (abtools.alignment.BaseAlignment attribute)

 	raw_target (abtools.alignment.BaseAlignment attribute)

 	region() (abtools.sequence.Sequence method)

 	remove_padding() (in module abtools.mongodb)

 	rename_collection() (in module abtools.mongodb)

 	
 	renkonen_similarity() (in module abtools._compare)

 	reverse_complement (abtools.sequence.Sequence attribute)

 	run() (in module abtools._compare)

 	(in module abtools._finder)

 	(in module abtools._phylogeny)

S

 	
 	score (abtools.alignment.NWAlignment attribute)

 	(abtools.alignment.SSWAlignment attribute)

 	sd_similarity() (in module abtools._compare)

 	Sequence (class in abtools.sequence)

 	
 	sequences (abtools.cluster.Cluster attribute)

 	setup_logging() (in module abtools.log)

 	shannon_entropy() (in module abtools._compare)

 	size (abtools.cluster.Cluster attribute)

 	SSWAlignment (class in abtools.alignment)

T

 	
 	target (abtools.alignment.BaseAlignment attribute)

 	target_begin (abtools.alignment.NWAlignment attribute)

 	(abtools.alignment.SSWAlignment attribute)

 	
 	target_end (abtools.alignment.NWAlignment attribute)

 	(abtools.alignment.SSWAlignment attribute)

 	target_id (abtools.alignment.BaseAlignment attribute)

U

 	
 	unset() (in module abtools.mongodb)

 	
 	update() (in module abtools.mongodb)

Welcome to abtools’s documentation!

Contents:

Indices and tables

	Index

	Module Index

	Search Page

Overview

Core Utilities

abtools.mongodb: Working with MongoDB

	
abtools.mongodb.get_connection(ip='localhost', port=27017, user=None, password=None)

	Returns a pymongo MongoClient object.

	Parameters

	
	ip (str) – IP address of the MongoDB server. Default is localhost.

	port (int) – Port of the MongoDB server. Default is 27017.

	user (str) – Username, if authentication is enabled on the MongoDB database.
Default is None, which results in requesting the connection
without authentication.

	password (str) – Password, if authentication is enabled on the MongoDB database.
Default is None, which results in requesting the connection
without authentication.

	
abtools.mongodb.get_db(db, ip='localhost', port=27017, user=None, password=None)

	Returns a pymongo Database object.

	Parameters

	
	db (str) – Name of the MongoDB database. Required.

	ip (str) – IP address of the MongoDB server. Default is localhost.

	port (int) – Port of the MongoDB server. Default is 27017.

	user (str) – Username, if authentication is enabled on the MongoDB database.
Default is None, which results in requesting the connection
without authentication.

	password (str) – Password, if authentication is enabled on the MongoDB database.
Default is None, which results in requesting the connection
without authentication.

	
abtools.mongodb.get_collections(db, collection=None, prefix=None, suffix=None)

	Returns a sorted list of collection names found in db.

	Parameters

	
	db (Database) – A pymongo Database object. Can be obtained
with get_db.

	collection (str) – Name of a collection. If the collection is
present in the MongoDB database, a single-element list will
be returned with the collecion name. If not, an empty list
will be returned. This option is primarly included to allow
for quick checking to see if a collection name is present.
Default is None, which results in this option being ignored.

	prefix (str) – If supplied, only collections that begin with
prefix will be returned.

	suffix (str) – If supplied, only collections that end with
suffix will be returned.

	Returns

	A sorted list of collection names.

	Return type

	list

	
abtools.mongodb.rename_collection(db, collection, new_name)

	Renames a MongoDB collection.

	Parameters

	
	db (Database) – A pymongo Database object. Can be obtained
with get_db.

	collection (str) – Name of the collection to be renamed.

	new_name (str, func) – new_name can be one of two things:

1. The new collection name, as a string.
2. A function which, when passed the current collection name,
 returns the new collection name. If the function
 returns an empty string, the collection will not be
 renamed.

	
abtools.mongodb.update(field, value, db, collection, match=None)

	Updates MongoDB documents.

Sets field equal to value for all documents that
meet match criteria.

	Parameters

	
	field (str) – Field to update.

	value (str) – Update value.

	db (Database) – A pymongo Database object.

	collection (str) – Collection name.

	match (dict) – A dictionary containing the match criteria, for example:

{'seq_id': {'$in': ['a', 'b', 'c']}, 'cdr3_len': {'$gte': 18}}

	
abtools.mongodb.unset(db, collection, field, match=None)

	Removes field from all records in collection that meet
match criteria.

	Parameters

	
	field (str) – Field to be removed.

	db (Database) – A pymongo Database object.

	collection (str) – Collection name.

	match (dict) – A dictionary containing the match criteria, for example:

{'seq_id': {'$in': ['a', 'b', 'c']}, 'cdr3_len': {'$gte': 18}}

	
abtools.mongodb.mongoimport(json, database, ip='localhost', port=27017, user=None, password=None, delim='_', delim1=None, delim2=None, delim_occurance=1, delim1_occurance=1, delim2_occurance=1)

	Performs mongoimport on one or more json files.

	Parameters

	
	json – Can be one of several things:

	path to a single JSON file

	an iterable (list or tuple) of one or more JSON file paths

	path to a directory containing one or more JSON files

	database (str) – Name of the database into which the JSON files
will be imported

	ip (str) – IP address of the MongoDB server. Default is localhost.

	port (int) – Port of the MongoDB database. Default is 27017.

	user (str) – Username for the MongoDB database, if authentication is enabled.
Default is None, which results in attempting connection without
authentication.

	password (str) – Password for the MongoDB database, if authentication is enabled.
Default is None, which results in attempting connection without
authentication.

	delim (str) – Delimiter, when generating collection names using a single delimiter.
Default is _

	delim_occurance (int) – Occurance at which to split filename when using a
single delimiter. Default is 1

	delim1 (str) – Left delimiter when splitting with two delimiters. Default is None.

	delim1_occurance (int) – Occurance of delim1 at which to split filename.
Default is 1

	delim2 (str) – Right delimiter when splitting with two delimiters. Default is None.

	delim2_occurance (int) – Occurance of delim2 at which to split filename.
Default is 1

	
abtools.mongodb.index(db, collection, fields, directions=None, desc=False, background=False)

	Builds a simple (single field) or complex (multiple fields) index
on a single collection in a MongoDB database.

	Parameters

	
	db (Database) – A pymongo Database object.

	collection (str) – Collection name.

	fields – Can be one of two things:

	the name of a single field, as a string

	an iterable (list/tuple) of one or more field names

	desc (bool) – If True, all indexes will be created in descending order.
Default is False.

	directions (list) – For complex indexes for which you’d like to have
different indexing directions (ascending for some fields, descending
for others), you can pass a list of pymongo direction objects (
pymongo.ASCENDING and pymongo.DESCENDING), in the same order as the
list of fields to be indexed. Must be the same length as the list
of index fields. Default is None.

	background (bool) – If True, the indexing operation will be processed
in the background. When performing background indexes, the MongoDB
database will not be locked.

	
abtools.mongodb.remove_padding(db, collection, field='padding')

	Removes a padding field.

	Parameters

	
	db (Database) – A pymongo Database object.

	collection (str) – Collection name

	field (str) – Name of the padding field. Default is padding

Secondary Annotation

 _static/comment-close.png

_static/comment.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 AbTools: Utilities for antibody sequence analysis

 		
 Install

 		
 Requirements

 		
 Additional dependencies

 		
 AbCompare

 		
 Overview

 		
 Examples

 		
 AbCorrect

 		
 Overview

 		
 Examples

 		
 AbFinder

 		
 Overview

 		
 Examples

 		
 AbPhylogeny

 		
 Overview

 		
 Examples

 		
 API Examples

 		
 API Reference

 		
 Core Utilities

 		
 abtools.alignment: Pairwise and Multiple Sequence Alignment

 		
 abtools.cluster: Sequence Clustering

 		
 abtools.log: Logging

 		
 abtools.pipeline: Utilities for building pipelines of AbTools functions

 		
 abtools.s3: Backup data to S3

 		
 abtools.sequence: Sequence utilities

 		
 Secondary Annotation

 		
 abtools.compare: Repertoire-level comparison

 		
 abtools.correct: PCR and sequencing error correction

 		
 abtools.finder: Mine NGS datasets for similarity to known mAbs

 		
 abtools.phylogeny: Phylogenetic analysis of antibody lineages

 		
 License

 		
 News

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

