

abstract-things

abstract-things is a JavaScript library that provides a simple base for
building libraries that interact with physical things, such as IoT-devices, and virtual things.

This library provides a base class named Thing that supports mixins of
various types. Things are described using two types of tags, one describing
the type of the thing and one describing its capabilities. Things are also
expected to describe their public API, to make remote use easier.

Types and capabilities are designed to be stable and to be combined. When
combined they describe a thing and what it can do.

Note

This documentation is a work in progress. Things are missing and may
sometimes be inaccurate. Please open issues on Github [https://github.com/tinkerhub/abstract-things] if you find something
that seems wrong.

Getting started

	Using things
	Thing API

	Remote API

	Building things
	Naming of identifiers, types and capabilities

	Metadata

	Mixins and with

	Initalization and destruction

	Handling events

	Values
	Angle

	Area

	Array

	Boolean

	Buffer

	Code

	Color

	Duration

	Energy

	Illuminance

	Length

	Mass

	Mixed

	Number

	Object

	Percentage

	Power

	Pressure

	Sound Pressure Level

	Speed

	String

	Temperature

	Voltage

	Volume

Types and capabilities

	Common capabilities
	cap:children - access child things

	cap:state - state tracking

	cap:restorable-state - capture and restore state

	cap:nameable - renameable things

	cap:power - monitor power state

	cap:switchable-power - switch power state

	cap:mode - monitor mode

	cap:switchable-mode - switch mode

	cap:error-state - error reporting

	cap:battery-level - monitor battery level

	cap:charging-state - monitor if charging

	cap:autonomous-charging - request charging

	cap:audio-feedback - if thing emits audio feedback

	cap:switchable-audio-feedback - enable or disable audio feedback

	Controllers
	cap:actions - emit events on actions

	type:controller - Generic controller

	type:button - Single button

	type:remote-control - Remote controls

	type:wall-controller - Controllers mounted on a wall

	Lights
	Implementing lights

	type:light-bulb - Light bulbs

	type:light-strip - Light strips

	cap:fading - support for fading changes

	cap:brightness - read brightness

	cap:dimmable - change brightness

	cap:colorable - coloring of lights

	cap:color:temperature - light supports temperature

	cap:color:full - light supports full range of color

	Sensors
	cap:atmospheric-pressure - read atmospheric pressure

	cap:carbon-dioxide-detection - detect abnormal CO2 levels

	cap:carbon-dioxide-level - read carbon dioxide level

	cap:carbon-monoxide-detection - detect abnormal CO levels

	cap:carbon-monoxide-leve - read carbon monoxide level

	cap:contact-detection - contact sensing

	cap:illuminance - read illuminance

	cap:motion-detection - motion sensing

	cap:pm2.5 - read PM2.5 density (air quality)

	cap:pm10 - read PM10 density (air quality)

	cap:power-consumed - read power consumed

	cap:power-load - read the current power load

	cap:relative-humidity - read humidity of air

	cap:smoke-detection - detect smoke

	cap:temperature - read temperature

	cap:voltage - read voltage of something

	cap:water-detection - detect water

	Climate
	cap:target-humidity - read the target humidity

	cap:adjustable-target-humidity - change the target humidity

	cap:cleaning-state - get if cleaning

	cap:autonomous-cleaning - activate cleaning

	cap:spot-cleaning - support for spot cleaning

	type:air-monitor - Air quality monitor

	type:air-purifier - Air purifiers

	type:humidifier - Humidifiers

	type:dehumidifier - Dehumidifers

	type:vacuum - Vacuum cleaners

	Electrical
	type:power-outlet - Power outlets

	type:power-channel - Power channels

	type:power-strip - Power strips

	type:power-plug - Power plugs

	type:wall-outlet - Wall outlets

	type:power-switch - Power switches

	type:wall-switch - Wall switches

Using things

Things provide a basic shared API no matter their types and capabilities. The
matches method can be used to match tags and to figure out what a thing is
and what it can do:

if(thing.matches('cap:colorable')) {
 console.log('Current color:', thing.color());
}

Events are one of the most important parts of things and listeners can be added
via the on method:

thing.on('colorChanged', color => console.log('The color has changed'));

// Listeners receive the thing as the second argument
const handler = (color, thing) => console.log('Color is now', color, 'for thing', thing);
thing1.on('colorChanged', handler);
thing2.on('colorChanged', handler);

Thing API

	
id

	The unique identifier of the thing as a string. The identifier should be
globally unique and contain a namespace.

Example:

console.log(thing.id);

Example of identifiers:

	hue:000b57fffe0eee95-01

	miio:55409498

	uuid:8125606b-7b57-405b-94d6-e5720c44aa6a

	space:global

See Naming of identifiers, types and capabilities for more details.

	
metadata

	Metadata associated with the thing. Contains information about types and
capabilities.

Example:

console.log(thing.metadata);
console.log(thing.metadata.tags);
console.log(thing.metadata.types);
console.log(thing.metadata.capabilities);

	
matches(...tags)

	Check if a thing matches a set of tags. Tags are created by the types
and capabilities of the thing.

	Arguments

	
	...tags – Set of tags that the thing should have.

	Returns

	Boolean indicating if the thing has the given tags.

Example:

if(thing.matches('type:light', 'cap:switchable-power')) {
 // Thing is of type light and has the switchable-power capability
}

	
on(eventName, listener)

	Register a listener for the given event. The listener will be invoked when
the thing emits the event. The listener will receive two arguments, the
first being the value of the event (or null) and the second being a
reference to the Thing that emitted the event.

	Arguments

	
	eventName (string) – The name of the event to listen for.

	listener (function) – Function that will be invoked when the event is emitted.

Example:

thing.on('stateChanged', (change, thing) =>
 console.log(thing, 'changed state:', change)
);

	
off(eventName, listener)

	Remove a listener for the given event. The listener must have been
previously registered via on().

	Arguments

	
	eventName (string) – The name of the event that the listener was registered for.

	listener (function) – Function that was used when registering the listener.

	
init()

	Initialize the thing. Most commonly used when creating a new thing. Many
libraries provide already initalized things via their main discovery or
creation function.

	Returns

	Promise that resolves to the instance being initalized.

thing.init()
 .then(thing => /* do something with the thing */)
 .catch(/* handle error */);

	
destroy()

	Destroy the thing. Should be called whenever the thing is no longer needed.

	Returns

	Promise that resolves to the instance being destroyed.

thing.destroy()
 .then(thing => /* do something with the thing */)
 .catch(/* handle error */);

Remote API

When a thing is exposed via a remote API, such as in Tinkerhub [https://github.com/tinkerhub/tinkerhub], it extends the above API with the
addition that actions (and properties) return promises.

Example:

// Properties are now functions that return promises:
thing.state()
 .then(result => console.log('Invoked state and got', state))
 .catch(err => console.log('Error occurred:', err);

// async/await can be used with actions:
const power = await thing.power(false);

// The base API still works as before:
console.log(thing.id);
thing.on('stateChanged', change => console.log(change));

Building things

Things are built by extending Thing with a combination of types and
capabilities. The first step is to make sure that the project has acccess to
abstract-things:

$ npm install abstract-things

It is recommended to target at least Node 8 to make use of async and
await. It will make handling the asynchronous nature of API calls easier.

The smallest possible thing simply extends Thing:

const { Thing } = require('abstract-things');

class ExampleThing extends Thing {
 constructor(id) {
 super();

 // Identifier is required to be set
 this.id = 'example:' + id;
 }
}

The following example provides a class named Timer that declares its type
and available API. It will emit the timer event when an added timer is
fired.

const { Thing } = require('abstract-things');
const { duration } = require('abstract-things/values');

/**
* Timer that calls itself `timer:global` and that allows timers to be set
* and listened for in the network.
*/
class Timer extends Thing {
 static get type() {
 return 'timer';
 }

 static availableAPI(builder) {
 builder.event('timer')
 .description('A timer has been fired')
 .type('string')
 .done();

 builder.action('addTimer')
 .description('Add a timer to be fired')
 .argument('string', false, 'Name of timer')
 .argument('duration', false, 'Amount of time to delay the firing of the timer')
 .done();
 }

 constructor() {
 super();

 this.id = 'timer:global';
 }

 addTimer(name, delay) {
 if(! name) throw new Error('Timer needs a name');
 if(! delay) throw new Error('Timer needs a delay');

 delay = duration(delay);

 setTimeout(() => {
 this.emitEvent('timer', name);
 }, delay.ms)
 }
}

Topics

	Naming of identifiers, types and capabilities

	Metadata

	Mixins and with

	Initalization and destruction

	Handling events

Naming of identifiers, types and capabilities

Naming is one of the most important aspects when both building and using things.
Libraries that use abstract-things are expected to follow a few conventions
to simplify use of the things they expose.

Namespaces

Libraries are expected to use a short and understandable namespace. Namespaces
are used for things such as identifiers and to mark things with custom types.

The namespace should be connected to what the library interacts with. This can
be something like hue for Philips Hue or bravia for Sony Bravia TVs.

Identifiers

Every Thing is required to have an identifer. Identifiers should be stable and
globally unique. An identifier needs a prefix, which is usually the namespace
of the library.

For most implementations an identifier will usually be provided with the thing
being interacted with. In those case it can simply be prefixed with the namespace
to create a suitable identifier.

Example of identifiers:

	hue:000b57fffe0eee95-01

	miio:55409498

	uuid:8125606b-7b57-405b-94d6-e5720c44aa6a

	space:global

As a convention things that bridge other networks such as Zigbee or Z-wave
include the keyword bridge in their identifier, such as
hue:bridge:000b57fffe0eee95.

Types

The types defined by abstract-things try to be short and descriptive.
Libraries may mark things with custom types, but those types are expected to
be namespaced or unique. Those custom types can be used to identify the
specific type of thing.

Example of custom types:

	hue:light

	miio:air-purifier

	zwave

Capabilities

Capabilities follow the same rules as types, see the previous section.

Metadata

Metadata for a thing is provided either via static getters and methods on
the defining class or during creation and initialization.

const { Thing, State } = require('thing');

// Calling with(State) will automatically add the state capability
class CustomThing extends Thing.with(State) {
 // This marks the thing as a custom:thing
 static get type() {
 return 'custom:thing';
 }

 constructor() {
 super();

 // Identifier is always required - set it
 this.id = 'custom:idOfThing';

 // Set the name of this thing, optional but recommended
 this.metadata.name = 'Optional name of thing';

 // Dynamically add a custom capability
 this.metadata.addCapabilities('custom:cap');
 }
}

Identifiers and name

The identifier of the thing could be considered metadata, but is actually set
directly on the thing. This should be done either in the constructor or during
initialization. See Naming of identifiers, types and capabilities for details about the identifier structure.

The name of the thing can be set on the metadata:

this.metadata.name = 'Custom Thing';

It is recommended to implement nameable if either
the thing being interacted with does not provide a default name or it supports
changing the name via its API.

Static getters for types and capabilities

	
static get type()

	Set a single extra type. Usually used by type-definitions to declare their
type.

Example:

static get type() {
 return 'namespace:custom-type';
}

	
static get types()

	Set several extra types.

Example:

static get types() {
 return ['namespace:custom-type'];
}

	
static get capability()

	Set a single extra capability. Usually used by full capabilities that are
mixed in with Thing.

Example:

static get capability() {
 return 'namespace:custom-cap';
}

	
static get capabilities()

	Set serveral extra capabilities.

Example:

static get capabilities() {
 return ['namespace:custom-cap'];
}

Dynamically adding

Types can be added at any time and so can capabilities. Capabilities can also
be removed.

	
metadata.addTypes(...types)

	Add one or more types to the metadata.

	Arguments

	
	...types – Types as strings that should be added.

	Returns

	The metadata object for chaining.

Example:

this.metadata.addTypes('custom:type', 'custom:type-2');

	
metadata.addCapabilities(...caps)

	
	Arguments

	
	...caps – Capabilities as strings that should be added.

	Returns

	The metadata object for chaining.

Example:

this.metadata.addCapabilities('custom:cap', 'color:temperature');

	
metadata.removeCapabilities(...caps)

	
	Arguments

	
	...caps – Capabilities as strings that should be removed.

	Returns

	The metadata object for chaining.

Example:

this.metadata.removeCapabilities('custom:cap', 'custom:connected');

Mixins and with

As things are just a combination of types and capabilities in there is support
for combining them built in to the core library. Thing provides a method
with that mixes several types and capabilities together:

class CustomThing extends Thing.with(Mixin1, Mixin2) {
 ...
}

Defining a mixin

Mixins are defined via Thing.mixin and they work the same as a normal
Thing-class such as with metadata. Mixins are functions
that create a JavaScript class with a specific parent:

const { Thing } = require('abstract-things');

const CustomMixin = Thing.mixin(Parent => class extends Parent {

 static get capability() {
 return 'custom:cap';
 }

 constructor(...args) {
 // Most mixins should call super with all arguments
 super(...args);

 // Set properties, initialize event listeners as normal
 this.custom = true;
 }

 customMethod() {
 return this.custom;
 }

});

Internal capabilities

In some cases when building a library things will be very straight-forward,
just extend Thing with whatever is needed, implement the behavior and
abstract methods and you’re done. In other cases such as when working against
a IoT-bridge for things such as lights or sensors you might find that its
useful to package the API used to talk to the thing as an internal capability.

Example:

const { Thing } = require('abstract-things');
const { Light, SwitchablePower } = require('abstract-things/light');

// This mixin provides access to the external API for custom capabilities
const CustomAPI = Thing.mixin(Parent => class extends Parent {

 constructor(api) {
 super();

 this.api = api;
 }

 initCallback() {
 return super.initCallback()
 // Ask the fake API to initialize itself
 .then(() => this.api.init());
 }

});

/*
 * Create the custom capability that provides an implementation of
 * SwitchablePower on top of CustomAPI.
 */
const CustomPower = Thing.mixin(Parent => class extends Parent
 .with(CustomAPI, SwitchablePower) {

 initCallback() {
 return super.initCallback()
 .then(() => {
 // During init this connects to the powerChanged event of our fake API
 this.api.on('powerChanged', power => this.updatePower(power))

 // Set the power as well
 this.updatePower(this.api.hasPower());
 });
 }

 updatePower(power) {
 return this.api.setPower(power);
 }

});

const CustomDimmable = ...;

// Define the specific combinations that can exist
const PoweredThing = Light.with(CustomPower);
const PoweredAndDimambleThing = Light.with(CustomPower, CustomDimmable);

// Create them and pass the API-instance
new PoweredThing(getApiSomehow());

Initalization and destruction

Managing the lifecycle of a thing can be done via callbacks for initialization
and destruction. Both callbacks are asynchronous using promises. Any
initalization that can not be done synchronous in the constructor should be
done via initCallback. The callback will be called when init() is
called on the thing.

destroyCallback can be used for anything that needs to be done when the
thing is destroyed, such as releasing socket connections and other resources.
The callback is also asynchronous and will be called when destroy() is
called on the thing.

class Example extends Thing {

 initCallback() {
 return super.initCallback()
 .then(() => console.log('initCallback run'));
 }

 destroyCallback() {
 return super.destroyCallback()
 .then(() => console.log('destroyCallback run'));
 }
}

new Example()
 // Initialize the thing
 .init()
 .then(thing => {
 // Then directly destroy it
 return thing.destroy();
 })
 .then(() => console.log('init() and destroy() finished'))
 .catch(err => console.log('Error occurred', err);

Protected methods

	
initCallback()

	Callback to run when a thing is being initalized via init().
Implementation should return a promise and must call super.

	Returns

	Promise that resolves when initalization is done.

Example implementation:

initCallback() {
 return super.initCallback()
 .then(() => {
 // Custom initalization code
 });
}

Example using async/await:

async initCallback() {
 await super.initCallback();

 // Custom initalization code
}

	
destroyCallback()

	Callback to run when a thing is being destroyed via ``destroy()`.
Implementation should return a promise and must call super.

	Returns

	Promise that resolves when initalization is done.

Example implementation:

destroyCallback() {
 return super.destroyCallback()
 .then(() => {
 // Custom destruction code
 });
}

Example using async/await:

async destroyCallback() {
 await super.destroyCallback();

 // Custom destruction code
}

Handling events

Events are emitted quite often by capabilities. In most cases the capability
will automatically emit events as needed, but when implementing custom
capabilities simply call emitEvent.

API

	
emitEvent(name[, payload[, options]])

	Emit an event with the given name. By default only a single event will be
emitted during a tick. So doing emitEvent('test') twice in a row will
only emit a single event, see the options to change the behavior.

	Arguments

	
	name (string) – The name of the event.

	payload – Optional payload of the event. Can be any object that can be converted to
JSON. If omitted will be equal to null.

	options – Optional object containing options for event emittal. The only option
available is multiple which can be set to allow multiple events
to be emitted during the same tick.

Example:

this.emitEvent('test');
this.emitEvent('rotation', angle(102));
this.emitEvent('action', { name: 'test' });
this.emitEvent('test', null, { multiple: true });

For information about how to listen for events see Using things.

Common patterns

It is recommended to emit as few events as possible, such as only emitting an
event when something changes.

As many capabilities extend state a common pattern for
event emittal looks something like this:

updatePower(newPowerValue) {
 if(this.updateState('power', newPowerValue)) {
 // Emit event if new value was different from the previous value
 this.emitEvent('power', newPowerValue);
 }
}

Values

abstract-things provides implementations of many commonly used value types,
including conversions from strings and to and from JSON.

Value types

	Angle

	Area

	Array

	Boolean

	Buffer

	Code

	Color

	Duration

	Energy

	Illuminance

	Length

	Mass

	Mixed

	Number

	Object

	Percentage

	Power

	Pressure

	Sound Pressure Level

	Speed

	String

	Temperature

	Voltage

	Volume

Angle

Representation of an angle. Returns objects created by amounts [https://github.com/aholstenson/amounts].

const { angle } = require('abstract-things/values');

// With no unit - degrees are the default unit
const v = angle(200);
console.log(v.value);
console.log(v.rad); // number converted to radians

// With a unit
console.log(angle(5, 'rad'));

// String (with our without unit)
console.log(angle('5 rad'));

Units

	Unit

	SI

	Names

	Degree

	No

	deg, degree, degrees

	Radian

	Yes

	rad, radian, radians

String conversion

Strings are parsed the same as for numbers with the addition
of units being parsed. The default unit is degrees.

Examples: 200, 200 deg, 5 rad, 5 radians

Area

Representation of an area. Returns objects created by amounts [https://github.com/aholstenson/amounts].

const { area } = require('abstract-things/values');

// With no unit - m² are the default unit
const v = area(1);
console.log(v.value);
console.log(v.cm2); // number converted to cm²

// With a unit
console.log(angle(50, 'cm2'));

// String (with our without unit)
console.log(angle('1 m²'));

Units

	Unit

	SI

	Names

	Square Meter

	Yes

	m², m^2, m2,
square metre,
square metres,
square meter,
square meters

	Square Inch

	No

	sq in, square inch,
square inches

	Square Foot

	No

	sq ft, square foot,
square feet

	Square Yard

	No

	sq yd, square yard,
square yards

	Square Mile

	No

	sq mi, square mile,
square miles

	Hectare

	No

	ha, hectare, hectares

	Acre

	No

	acre, acres

String conversion

Strings are parsed the same as for numbers with the addition
of units being parsed. The default unit is degrees.

Examples: 200, 200 deg, 5 rad, 5 radians

Array

Value type for representing an array. Mostly used when converting to and from
JSON.

const values = require('abstract-things/values');

const json = values.toJSON('array', ['one', 'two']);
const array = values.fromJSON('array', json);

Boolean

Boolean value type. Supports conversion from many common string values.

const { boolean } = require('abstract-things/values');

console.log(boolean('true'));
console.log(boolean(false));
console.log(boolean(1));
console.log(boolean('no'));

String conversion

true, yes, on,

 Buffer

Buffer

Buffer value type, for representing binary values.

const { buffer } = require('abstract-things/values');

console.log(buffer(nodeBuffer));
console.log(buffer('base64-encoded-string-here'));
console.log(buffer([100, 20, 240]));

 Code

Code

Value type for representing a code with a description. Codes are commonly used
for things like errors, actions and modes that need to be identifiable but also
a human readable description.

const { code } = require('abstract-things/values');

const testCode = code('test');
console.log(testCode.id);
console.log(testCode.description);

const testCode2 = code({ id: 'test', description: 'Description for code' });
const testCode3 = code('test: Description for code');

 Color

Color

Colors are available the color type and supports conversions between many
common color spaces.

const { color } = require('abstract-things/values');

console.log(color('red'));
console.log(color('5500K'));
console.log(color('#ff0000'));
console.log(color('hsl(300, 80%, 100%)'));

RGB

RGB colors are supported and are commonly created via either named colors, such
as red and purple or via Hex-notation such as #ff0000.

RGB colors can be created via the rgb-function:

const colorPicked = color.rgb(255, 0, 0);

Colors can be converted to RGB via the rgb-accessor and their individual
components accessed:

const rgb = colorPicked.rgb;

console.log('Red:', rgb.red);
console.log('Green:', rgb.green);
console.log('Blue:', rgb.blue);

Temperatures

Color temperatures can be created from a string on the form [number]K,
such as 4000K or 5500K: color('4000K'). Temperatures can also be
created via the temperature function: color.temperature(4000).

The following temperatures are available via name:

	overcast - 6500 Kelvins

	daylight - 5500 Kelvins

	sunrise - 2400 Kelvins

	sunset - 2400 Kelvins

	candle - 2000 Kelvins

	moonlight - 4100 Kelvins

Example:

color('4000K');
color.temperature(5500);
color('overcast');

Any color can be converted to its nearest temperature via the getter
temperature:

console.log(color('red').temperature);
console.log(color('white').temperature);

The actual Kelvin-value is available via the kelvins accessor:

console.log(color.kelvins);

It’s also possible to get a mired-version of the temperature which is used
by Zigbee-lights: color('4000K').mired.value

 Duration

Duration

Representation of a duration of time. Returns objects created by amounts [https://github.com/aholstenson/amounts].

const { duration } = require('abstract-things/values');

// With no unit - milliseconds are the default unit
const v = duration(2000);
console.log(v.value);
console.log(v.seconds); // number converted to seconds

// With a unit
console.log(duration(2, 's'));

// String (with our without unit)
console.log(duration('2 s'));
console.log(duration('1m 10s'));
console.log(duration('2 hours 5 m'));

Units

	Unit

	SI

	Names

	Milliseconds

	No

	ms, millisecond, milliseconds

	Seconds

	No

	s, second, seconds

	Minutes

	No

	m, minute, minutes

	Hours

	No

	h, hour, hours

	Days

	No

	d, day, days

String conversion

Values in the string are parsed the same as for numbers with
multiple values with units supported.

Examples: 2000, 2000 ms, 5 s, 5 seconds, 1 hour, 10 minutes,
1d 5m

 Energy

Energy

Representation of an energy amount. Returns objects created by amounts [https://github.com/aholstenson/amounts].

const { energy } = require('abstract-things/values');

// With no unit - joules are assumed
const v = energy(200);
console.log(v.value);
console.log(v.wh); // number converted to watt hours

// With a unit
console.log(energy(3.5, 'Wh'));

// String (with our without unit)
console.log(energy('5 J'));

Units

	Unit

	SI

	Names

	Joules

	Yes

	J, j, joule, joules

	Watt hours

	True

	Wh, wh, watt hour, watt hours

String conversion

Strings are parsed the same as for numbers with the addition
of units being parsed. The default unit is joules.

Examples: 200, 200 J, 3.5 Wh, 40 kJ

 Illuminance

Illuminance

Representation of an illuminance level. Returns objects created by amounts [https://github.com/aholstenson/amounts].

const { illuminance } = require('abstract-things/values');

// With no unit - lux are the default unit
const v = illuminance(200);
console.log(v.value);
console.log(v.fc); // convert to foot-candle
console.log(v.lux); // convert to lux

// With a unit
console.log(illuminance(5, 'lx'));

// String (with our without unit)
console.log(illuminance('200 lx'));

Units

	Unit

	SI

	Names

	Lux

	Yes

	lx, lux

	Phot

	No

	ph, phot

	Nox

	No

	nx, nox

	Foot-candle

	No

	fc, lm/ft², ft-c,
foot-candle,
foot-candles,
foot candle, foot candles

String conversion

Strings are parsed the same as for numbers with the addition
of units being parsed. The default unit is lux.

Examples: 200, 200 lx, 5 fc, 5 phot

 Length

Length

Representation of a length. Returns objects created by amounts [https://github.com/aholstenson/amounts].

const { length } = require('abstract-things/values');

// With no unit - metre is the default unit
const v = length(2);
console.log(v.value);
console.log(v.cm); // convert to centimetres
console.log(v.ft); // convert to feet

// With a unit
console.log(length(5, 'in'));

// String (with our without unit)
console.log(length('200 cm'));

Units

	Unit

	SI

	Names

	Metre

	Yes

	m, meter, meters, metre, metres

	Inch

	No

	in, inch, inches

	Feet

	No

	ft, foot, feet

	Yard

	No

	yd, yard, yards

	Mile

	No

	mi, mile, miles

String conversion

Strings are parsed the same as for numbers with the addition
of units being parsed. The default unit is metre.

Examples: 200, 200 cm, 5 ft, 20 inches

 Mass

Mass

Representation of a mass. Returns objects created by amounts [https://github.com/aholstenson/amounts].

const { mass } = require('abstract-things/values');

// With no unit - grams is the default unit
const v = mass(200);
console.log(v.value);
console.log(v.kg); // convert to kilograms
console.log(v.lb); // convert to pounds

// With a unit
console.log(mass(5, 'lbs'));

// String (with our without unit)
console.log(mass('20 oz'));

Units

	Unit

	SI

	Names

	Gram

	Yes

	g, gram, grams, gramme, grammes

	Pound

	No

	lb, lbs, pound, pounds, #

	Ounce

	No

	oz, ounce, ounces

	Stone

	No

	st, stone, stones

String conversion

Strings are parsed the same as for numbers with the addition
of units being parsed. The default unit is grams.

Examples: 200, 200 g, 5 kg, 20 lbs

 Mixed

Mixed

Value type representing mixed values. Mostly used for converting to and from
JSON. A mixed value can be any other value supported.

const values = require('abstract-things/values');

const json = values.toJSON('mixed', somethingToConvert);
const array = values.fromJSON('mixed', json);

 Number

Number

Number value type.

const { number } = require('abstract-things/values');

console.log(number(1234));
console.log(number('1234'));
console.log(number(12.34));
console.log(number('12.34'));

String conversion

The input string will be parsed into a number. Parsing supports integers such
as 1 and 545. Decimal points are also supported: 1.2 and 4.51.

SI-prefixes

Units in the SI system can be combined with SI-prefixes to create a new unit.
SI-prefixes are supported both by their short names and their long names.
Examples: cm, milliliters, hPa, MW, kilowatt

	Long Name

	Short name

	Factor

	Factor (expanded)

	yocto

	y

	10 -24

	0.000 000 000 000 000 000 000 001

	zepto

	z

	10 -21

	0.000 000 000 000 000 000 001

	atto

	a

	10 -18

	0.000 000 000 000 000 001

	femto

	f

	10 -15

	0.000 000 000 000 001

	pico

	p

	10 -12

	0.000 000 000 001

	nano

	n

	10 -9

	0.000 000 001

	micro

	u, mc, µ

	10 -6

	0.000 001

	milli

	m

	10 -3

	0.001

	centi

	c

	10 -2

	0.01

	deci

	d

	10 -1

	0.1

	deca, deka

	da

	10 1

	10

	hecto

	h

	10 2

	100

	kilo

	k

	10 3

	1 000

	mega

	M

	10 6

	1 000 000

	giga

	G

	10 9

	1 000 000 000

	tera

	T

	10 12

	1 000 000 000 000

	peta

	P

	10 15

	1 000 000 000 000 000

	exa

	E

	10 18

	1 000 000 000 000 000 000

	zetta

	Z

	10 21

	1 000 000 000 000 000 000 000

	yotta

	Y

	10 24

	1 000 000 000 000 000 000 000 000

 Object

Object

Value type for representing an object. Mostly used when converting to and from
JSON.

const values = require('abstract-things/values');

const json = values.toJSON('object', { key: 'value' });
const array = values.fromJSON('object', json);

 Percentage

Percentage

Number representing a percentage, forces the number to be between 0 and 100.

const { percentage } = require('abstract-things/values');

console.log(percentage(80.2));
console.log(percentage('80.2'));
console.log(percentage('80%'));

String conversion

String conversion uses parseFloat.

 Power

Power

Representation of power. Returns objects created by amounts [https://github.com/aholstenson/amounts].

const { power } = require('abstract-things/values');

// With no unit - watt is the default unit
const v = power(200);
console.log(v.value);
console.log(v.hp); // convert to horsepower
console.log(v.watt); // convert to watts

// With a unit
console.log(power(1, 'hp'));

// String (with our without unit)
console.log(power('200 W'));

Units

	Unit

	SI

	Names

	Watt

	Yes

	w, W, watt

	Horsepower

	No

	hp, horsepower

String conversion

Strings are parsed the same as for numbers with the addition
of units being parsed. The default unit is watt.

Examples: 200, 200 W, 1 hp, 200 horsepower

 Pressure

Pressure

Representation of pressure. Returns objects created by amounts [https://github.com/aholstenson/amounts].

const { pressure } = require('abstract-things/values');

// With no unit - pascal is the default unit
const v = pressure(101325);
console.log(v.value);
console.log(v.atm); // convert to atmospheres

// With a unit
console.log(pressure(1, 'atm'));

// String (with our without unit)
console.log(pressure('2000 hPa'));

Units

	Unit

	SI

	Names

	Pascal

	Yes

	pa, Pa, pascal,
pascals

	Atmosphere

	No

	atm, atmosphere,
atmospheres

	Bar

	No

	bar, bars

	PSI

	No

	psi,
pounds per square inch,
pound per square inch

	Torr

	No

	torr

	mmHg

	No

	mmHg, ‘millimetre of
mercury’,
millimetres of mercury,
millimeter of mercury,
millimetres of mercury

String conversion

Strings are parsed the same as for numbers with the addition
of units being parsed. The default unit is pascal.

Examples: 200, 200 Pa, 1 atm, 200 hPa, 1013.25 hPa

 Sound Pressure Level

Sound Pressure Level

Representation of a sound pressure level. Returns objects created by amounts [https://github.com/aholstenson/amounts].

const { soundPressureLevel } = require('abstract-things/values');

// With no unit - decibel is the default unit
const v = soundPressureLevel(40.2);
console.log(v.value);
console.log(v.db); // convert to decibel

// With a unit
console.log(soundPressureLevel(50, 'dB'));

// String (with our without unit)
console.log(soundPressureLevel('20 decibels'));

Units

	Unit

	SI

	Names

	Decibels

	No

	dB, db, dbs, decibel, decibels

String conversion

Strings are parsed the same as for numbers with the addition
of units being parsed. The default unit is decibel.

Examples: 20, 45.5 dB, 100 decibels

 Speed

Speed

Representation of a speed. Returns objects created by amounts [https://github.com/aholstenson/amounts].

const { speed } = require('abstract-things/values');

// With no unit - metres/second is the default unit
const v = speed(20);
console.log(v.value);
console.log(v.kph); // convert to kilometers per hour
console.log(v.mps); // convert to metres per second

// With a unit
console.log(speed(50, 'km/h'));

// String (with our without unit)
console.log(speed('20 knots'));

Units

	Unit

	SI

	Names

	Metres/Second

	Yes

	m/s, mps,
metre per second,
metres per second,
meter per second,
meters per second,
metre/second,
metres/second,
meter/second,
meters/second

	Kilometre/Hour

	No

	km/h, kph,
kilometre per hour,
kilometres per hour,
kilometer per hour
kilometers per hour,
kilometers/hour,
kilometre/hour

	Miles/Hour

	No

	mph, mile per hour,
miles per hour,
mile/hour, miles/hour

	Feet/Second

	No

	ft/s, fps,
foot per second,
feet per second,
foot/second, feet/second

	Knot

	No

	kt, knot, knots

String conversion

Strings are parsed the same as for numbers with the addition
of units being parsed. The default unit is metres per second.

Examples: 20, 20 m/s, 100 km/h, 30 mph, 20 knots

 String

String

String value type.

const { string } = require('abstract-things/values');

console.log(string('Hello world'));
console.log(string(12));

 Temperature

Temperature

Representation of a temperature. Returns objects created by amounts [https://github.com/aholstenson/amounts].

const { temperature } = require('abstract-things/values');

// With no unit - celsius is the default unit
const v = temperature(20);
console.log(v.value);
console.log(v.F); // convert to fahrenheit
console.log(v.celsius); // convert to celsius

// With a unit
console.log(temperature(50, 'F'));

// String (with our without unit)
console.log(temperature('220 K'));

Units

	Unit

	SI

	Names

	Celsius

	No

	C, c, celsius

	Kelvin

	Yes

	K, kelvin, kelvins

	Fahrenheit

	No

	F, f, fahrenheit, fahrenheits

String conversion

Strings are parsed the same as for numbers with the addition
of units being parsed. The default unit is Celsius.

Examples: 20, 20 C, 100 kelvins, 30 F

 Voltage

Voltage

Representation of a voltage. Returns objects created by amounts [https://github.com/aholstenson/amounts].

const { voltage } = require('abstract-things/values');

// With no unit - volts is the default unit
const v = voltage(20);
console.log(v.value);
console.log(v.volts); // convert to volts

// With a unit
console.log(voltage(50, 'V'));

// String (with our without unit)
console.log(voltage('220 volts'));

Units

	Unit

	SI

	Names

	Volt

	Yes

	V, v, volt, volts

String conversion

Strings are parsed the same as for numbers with the addition
of units being parsed. The default unit is volts.

Examples: 20, 20 V, 100 volts

 Volume

Volume

Representation of a volume. Returns objects created by amounts [https://github.com/aholstenson/amounts].

const { volume } = require('abstract-things/values');

// With no unit - litres is the default unit
const v = volume(20);
console.log(v.value);
console.log(v.gallon); // convert to gallons
console.log(v.L); // convert to litres
console.log(v.ml); // convert to millilitres

// With a unit
console.log(volume(50, 'cl'));

// String (with our without unit)
console.log(voltage('220 ml'));

Units

	Unit

	SI

	Names

	Liter

	Yes

	l, L,
liter, litre,
litre, litres

	Gallon

	No

	gal, gallon,
gallons

	Quart

	No

	qt, quart,
quarts

	Pint

	No

	pt, pint,
pints

	Cup

	No

	cu, cup,
cups

	Fluid ounce

	No

	floz, oz,
fluid ounce,
ounce,
fluid ounces,
ounces

	Tablespoon

	No

	tb, tbsp,
tbs,
tablesppon,
tablespoons

	Teaspoon

	No

	tsp,
teaspoon,
teaspoons

String conversion

Strings are parsed the same as for numbers with the addition
of units being parsed. The default unit is litres.

Examples: 1, 1 l, 100 cl, 5 tbps

 Common capabilities

Common capabilities

	cap:children - access child things

	cap:state - state tracking

	cap:restorable-state - capture and restore state

	cap:nameable - renameable things

	cap:power - monitor power state

	cap:switchable-power - switch power state

	cap:mode - monitor mode

	cap:switchable-mode - switch mode

	cap:error-state - error reporting

	cap:battery-level - monitor battery level

	cap:charging-state - monitor if charging

	cap:autonomous-charging - request charging

	cap:audio-feedback - if thing emits audio feedback

	cap:switchable-audio-feedback - enable or disable audio feedback

 cap:children - access child things

cap:children - access child things

This capability is used when a thing has children. Children are used to map
when a thing is a bridge or when a physical thing has several virtual children.
An example of such use is for power strips that
support control or monitoring of their indivudal outlets.

if(thing.matches('cap:children')) {
 // Get all children
 const children = thing.children();

 // Get a single child
 const child = thing.child('usb');
}

API

	
children()

	Get the children of the thing as an iterable.

Example:

for(const child of thing.children) {
 console.log('Child:', child);
}

	
child(id)

	Get a child based on its identifier. The identifier can either be a full
identifier or a partial one.

	Arguments

	
	id (string) – The identifier to get thing for.

	Returns

	The thing if found or null.

Example:

const child = thing.child(fullIdOrPartial);

Partial identifiers

Partial identifiers are identifiers that make it easier to find a child. The
are constructed in such a way that the full identifier is a combination of the
parent id with a short logical id for the child.

For a thing with id example:thing a child with the partial identifier
usb would have the full id example:thing:usb.

Events

	
thing:available

	A new child is available for this thing. Emitted whenver a child is added.

Example:

thing.on('thing:available', child => console.log('Added child:', child));

	
thing:unavailable

	A child is no longer available. Emitted when a child is no longer available.

Example:

thing.on('thing:unavailable', child => console.log('Removed child:', child));

Protected methods

	
addChild(thing)

	Add a child to this thing. This will add the thing and emit the
thing:available event.

	Arguments

	
	thing – The thing to add as a child.

Example:

this.addChild(new ChildThing(...));

	
removeChild(thingOrId)

	Remove a child from this thing. This will remove the thing and emit the
thing:unavailable event.

	Arguments

	
	thingOrId – The thing instance or identifier that should be removed.

Example:

this.removeChild(existingChild);
this.removeChild('id-of-thing');

	
findChild(filter)

	Find the first child that matches the given filter function.

	Arguments

	
	filter (function) – Filter function to apply, should return true when a thing matches.

	Returns

	Thing if found, otherwise null.

Example:

// Get the first power outlet
this.findChild(thing => thing.matches('type:power-outlet'));

Implementing capability

When implementing this capability children need to be managed. This can either
be done manually or via a method such as ChildSyncer.

Manual management is recommended if only a few known children exist:

const { Thing, Children } = require('abstract-things');

class Example extends Thing.with(Children) {

 constructor() {
 super();

 this.addChild(new ChildThing(this, ...));
 }

}

Using ChildSyncer, commonly for things such as bridges:

const { ChildSyncer } = require('abstract-things/children');

class Example extends Thing.with(Children) {

 constructor() {
 super();

 this.syncer = new ChildSyncer(this, (def, thing) => {

 });
 }

 async initCallback() {
 await super.initCallback();

 await this.loadChildren();
 }

 async loadChildren() {
 /*
 * Load the children, should be an array with objects that contain
 * at least an `id` property.
 */
 const defs = await loadChildrenSomehow();

 await syncer.update(defs);
 }
}

 cap:state - state tracking

cap:state - state tracking

The state-capability provides a way to get and update the state of a thing.
State is split into several state keys that are updated separately.

if(thing.matches('cap:state')) {
 console.log('Current state:', this.state);
}

API

	
state()

	Get the current overall state.

	Returns

	Promise that resolves to an object representing the current state.
Keys represent names of the state key.

Usage:

const state = await thing.state();
console.log('State is', state);
console.log('Value of power is', state.power);

Events

	
stateChanged

	State has changed for the thing.

thing.on('stateChanged', change =>
 console.log('Key', change.key, 'changed to', change.value)
);

Protected methods

	
getState(key[, defaultValue])

	Get the current value of the given state key.

	Arguments

	
	power (string) – The state key to get value for.

	defaultValue – Fallback to return if the state key is not set.

	Returns

	The value for the state key, the default value or null.

	
updateState(key, value)

	Update the state of the given key. This will update the state key and emit
the event stateChanged.

	Arguments

	
	key (string) – The state key to update.

	value – The new value of the state key.

	Returns

	Boolean indicating if the state value has changed.

	
removeState(key)

	Remove state stored for the given key. Will emit a stateChanged event.

	Arguments

	
	key (string) – The state key to remove.

Implementing capability

The state-capability has no functions that need to be implemented.
updateState can be called at any time to update a state key.

const { Thing, State } = require('abstract-things');

class Example extends Thing.with(State) {
 constructor() {
 super();

 this.updateState('key', true);
 }
}

 cap:restorable-state - capture and restore state

cap:restorable-state - capture and restore state

restorable-state provides an extension to state that supports
capturing and setting state.

if(thing.matches('cap:restorable-state')) {
 console.log('Keys that can be restored:' , thing.restorableState);

 // Capture the state
 const state = await thing.captureState();

 // A bit later the state can be restored
 await thing.setState(state);
}

API

	
restorableState

	Get an array of the state-keys that are restorable.

Example:

console.log(thing.restorableState);
console.log(thing.restorableState[0]);

	
captureState()

	Capture all the state that can be restored.

	Returns

	Promise that resolves to the object representing the state.

Example:

thing.setState(state)
 .then(...)
 .catch(...);

const state = await thing.captureState();

	
setState(state)

	Set the state of the thing. Can be used together with result captured via
captureState().

	Arguments

	
	state (object) – State to set.

	Returns

	Promise that will resolve when state has been set.

Example:

thing.setState(state)
 .then(...)
 .catch(...);

await thing.setState(state);

Protected methods

	
changeState(state)

	Abstract. Change the state of the thing. Implementations should call
super and restore custom state-keys when that promise resolves.

Example:

changeState(state) {
 return super.changeState(state)
 .then(() => {
 if(typeof state.color !== 'undefined') {
 return changeColorSomehow(state.color);
 }
 });
}

Implementing capability

Most implementations of this capability are by other capabilities.
Implementations need to override both get restorableState and
changeState.

The getter for restorableState must also take care to include the state-keys
defined as restorable by its parent:

get restorableState() {
 return [...super.restorableState, 'own-key'];
}

It is recommended to provide a method that defines a default restore behavior,
so that its easy to override the default behavior if needed.

Example:

const { Thing, RestorableState } = require('abstract-things');

const Custom = Thing.capability(Parent => class extends Parent.with(RestorableState) {

 get restorableState() {
 // Must call super.restorableState and make it part of the result
 return [...super.restorableState, 'color'];
 }

 changeState(state) {
 return super.changeState(state)
 .then(() => {
 if(typeof state.color !== 'undefined') {
 return this.setColorState(state.color);
 }
 });
 }

 setColorState(color) {
 // The default restore behavior is to call setColor
 return this.setColor(color);
 }

 setColor(color) {
 ...
 }
});

 cap:nameable - renameable things

cap:nameable - renameable things

nameable is used by things that have a name that can be updated.

if(thing.matches('cap:nameable')) {
 thing.setName('New Name')
 .then(() => console.log('Name updated'))
 .catch(err => console.log('Error occurred during update:', err));
}

API

	
setName(name)

	Update the name of this thing.

	Arguments

	
	name (string) – Name for thing.

	Returns

	Promise that resolves to the name set.

Protected methods

	
changeName(name)

	Abstract. Change and store the name of the thing. This is called when the
user calls setName. This method should update the name property of
the metadata when the new name has been stored.

	Arguments

	
	name (string) – The name to set.

	Returns

	Promise that resolves after name has been updated.

Example:

changeName(name) {
 return setNameSomehow(name)
 .then(() => this.metadata.name = name);
}

Implementing capability

changeName needs to be implemented to actually set the name. The name
should be loaded and set either in the constructor or initCallback of the
thing.

const { Thing, Nameable } = require('abstract-things');

class Example extends Thing.with(Nameable) {
 initCallback() {
 return super.initCallback()
 .then(() => loadNameSomehow())
 .then(name => this.metadata.name = name);
 }

 changeName(name) {
 return setNameSomehow(name)
 .then(() => this.metadata.name = name);
 }
}

For things that just need to be nameable a special capability is provided
that stores the name locally:

const { Thing, EasyNameable } = require('abstract-things');

class Example extends Thing.with(EasyNameable) {
}

 cap:power - monitor power state

cap:power - monitor power state

The power-capability is used for any thing that can monitor its power
state.

if(thing.matches('cap:power')) {
 console.log('Power is', await thing.power());

 thing.on('powerChanged', power => console.log('Power is now', power));
}

Related capabilities: switchable-power, state

API

	
power()

	Get the current power state.

	Returns

	Promise that resolves to a boolean
representing the current power state.

Example:

thing.power()
 .then(power => ...)
 .catch(...);

const powerIsOn = await thing.power();

Events

	
powerChanged

	The current power state has changed. Payload will be current power state
as a boolean.

thing.on('powerChanged', power => console.log('power is now:', power));

Protected methods

	
updatePower(power)

	Update the current power state of the thing. Will change the state key
power and emit the power event.

	Arguments

	
	power (boolean) – The current power state.

Implementing capability

The power-capability has no functions that need to be implemented. Call
updatePower whenever the monitored power state changes.

Example:

const { Thing, Power } = require('abstract-things');

class Example extends Thing.with(Power) {
 constructor() {
 super();

 // Indicate that power has been switched every second
 setInterval(() => {
 this.updatePower(! this.getState('power'));
 }, 1000);
 }
}

 cap:switchable-power - switch power state

cap:switchable-power - switch power state

The switchable-power-capability is an extension to the power-capability
for things that can also switch their power state.

if(thing.matches('cap:switchable-power')) {
 console.log('Power is', await thing.power());

 // Switch the thing on
 await thing.power(true);
}

Related capabilities: power, state

API

	
power([powerState])

	Get or set the current power state.

	Arguments

	
	powerState (boolean) – Optional boolean to change power state to.

	Returns

	Promise that resolves to the current power state as a
boolean.

Example:

// Getting via async/await
const powerIsOn = await thing.power();

// Switching via promise then/catch
thing.power(false)
 .then(result => console.log('Power is now', result))
 .catch(err => console.log('Error occurred', err);

	
setPower(powerState)

	Set the power of the thing.

	Arguments

	
	powerState (boolean) – The new power state as a boolean.

	Returns

	Promise that will resolve to the new power state.

Example:

// Using async/await
await thing.setPower(true);

// Using promise then/catch
thing.setPower(true)
 .then(result => console.log('Power is now', result))
 .catch(err => console.log('Error occurred', err);

	
togglePower()

	Toggle the power of the thing. Will use the currently detected power state
and switch to the opposite.

	Returns

	Promise that will resolve to the new power state.

Example:

// Using async/await
await thing.togglePower();

// Using promise then/catch
thing.togglePower()
 .then(result => console.log('Power is now', result))
 .catch(err => console.log('Error occurred', err);

	
turnOn()

	Turn the thing on.

	Returns

	Promise that will resolve to the new power state.

Example:

// Using async/await
await thing.turnOn();

// Using promise then/catch
thing.turnOn()
 .then(result => console.log('Power is now', result))
 .catch(err => console.log('Error occurred', err);

	
turnOff()

	Turn the thing off.

	Returns

	Promise that will resolve to the new power state.

Example:

// Using async/await
await thing.turnOff();

// Using promise then/catch
thing.turnOff()
 .then(result => console.log('Power is now', result))
 .catch(err => console.log('Error occurred', err);

Protected methods

	
changePower(power)

	Abstract. Change the power of this thing. Called on the thing when of
the power methods request a change. Implementations should call
updatePower before resolving to indicate that a change has occurred.

Can be called with the same power state as is currently set.

	Arguments

	
	power (boolean) – The new power of the thing as a boolean.

	Returns

	Promise if asynchronous.

Implementing capability

The switchable-power-capability requires that the function changePower
is implemented.

Example:

const { Thing, SwitchablePower } = require('abstract-things');

class Example extends Thing.with(SwitchablePower) {
 constructor() {
 super();

 // Make sure to initialize the power state via updatePower
 }

 changePower(power) {
 /*
 * This method is called whenever a power change is requested.
 *
 * Change the power here and return a Promise if the method is
 * asynchronous. Also call updatePower to indicate the new state
 * if not done by switching.
 */
 return switchWithPromise(power)
 .then(() => this.updatePower(power));
 }
}

 cap:mode - monitor mode

cap:mode - monitor mode

mode is used for things that have a mode that can be monitored.

if(thing.matches('cap:mode')) {
 console.log('Mode is', await thing.mode());

 thing.on('modeChanged', mode => console.log('Mode is now', mode));
}

API

	
mode()

	Get the current mode of the thing.

	Returns

	Promises that resolves to a string indicating
the identifier of the mode.

Example:

thing.mode()
 .then(mode => ...)
 .catch(...);

const mode = await thing.mode();

	
modes()

	Get the modes that this thing supports.

	Returns

	Promise that will resolve to the modes as an array containing
codes.

Example:

const modes = await thing.modes();

const firstMode = modes[0];
console.log('Id:', firstMode.id);
console.log('Description:', firstMode.description);

Events

	
modeChanged

	The current mode has changed. Payload of the event is the current mode as
a string.

thing.on('modeChanged', mode => console.log('Mode is now', mode));

	
modesChanged

	The available modes have changed.

Protected methods

	
updateMode(mode)

	Update the currently detected mode. Calling this method with a new mode
will change the mode and trigger the mode event.

	Arguments

	
	mode (string) – The id of the current mode.

Example:

this.updateMode('silent');

	
updateModes(modes)

	Update the modes that are available for the thing.

	Arguments

	
	modes (array) – Array of modes as codes. Entries in the array
will be automatically converted to codes if possible.

Example:

this.updateModes([
 'idle',
 'silent: Silent speed',
 { id: 'auto', description: 'Autoselect speed' }
]);

Implementing capability

When implementing this capability call updateModes in the constructor or
initCallback of the thing. updateMode should be used whenever the mode
is changed.

Example:

const { Thing, Mode } = require('abstract-things');

class Example exends Thing.with(Mode) {
 initCallback() {
 return super.initCallback()
 .then(() => this.updateModes(modesDetected));
 }
}

 cap:switchable-mode - switch mode

cap:switchable-mode - switch mode

Capability used for things that can switch their mode.

if(thing.matches('cap:switchable-mode')) {
 console.log('Mode is', await thing.mode());

 // Switch the mode
 await thing.mode('new-mode');
}

API

	
mode([newMode])

	Get or set the mode of the thing. Will return the mode as a string if no
mode is specified. Will return a promise if a mode is specified.

	Arguments

	
	newMode (string) – Optional mode to change to.

	Returns

	Promise when switching mode, string if getting.

Example:

// Getting returns a string
const currentMode = await thing.mode();

// Switching returns a promise
thing.mode('new-mode')
 .then(result => console.log('Mode is now', result))
 .catch(err => console.log('Error occurred', err);

Protected methods

	
changeMode(newMode)

	Abstract. Change to a new mode. Will be called whenever a change to the
mode is requested. Implementations should call updateMode(newMode)
before resolving to indicate that the mode has changed.

	Arguments

	
	newMode (string) – The new mode of the thing.

	Returns

	Promise if asynchronous.

Implementing capability

Implementations require that the method changeMode is implemented.

const { Thing, SwitchableMode } = require('abstract-things');

class Example extends Thing.with(SwitchableMode) {

 changeMode(newMode) {
 return swithcWithPromise(newMode)
 .then(() => this.updateMode(newMode));
 }

}

 cap:error-state - error reporting

cap:error-state - error reporting

The error-state capability is used when a thing can report an error, such
as a humidifier running out of water or a autonomous vacuum getting stuck.

if(thing.matches('cap:error-state')) {
 if(thing.error) {
 console.log('Error is:', thing.error);
 }
}

API

	
error()

	Get the current error or null if no error.

	Returns

	Promise that resolves to a code if the thing is
currently in an error state, or null if no error state.

Example:

thing.error()
 .then(err => ...)
 .catch(...);

const error = await thing.error();

Events

	
errorChanged

	The current error has changed. The payload will be the current error state
as a code or null.

Example:

thing.on('errorChanged', error => console.log('Error state:', error));

	
error

	Emitted when an error occurs. The payload will be the error.

Example:

thing.on('error', error => console.log('Error occured:', error));

	
errorCleared

	Emitted when the thing no longer has an error.

Example:

thing.on('errorCleared', () => console.log('Thing no longer has an error'));

Protected methods

	
updateError(batteryLevel)

	Update the current error state.

	Arguments

	
	error (code) – The new error state as a code or null if
no error.

Example:

this.updateError('some-error');
this.updateError(null);

Implementing capability

When implementing this capability the implementor needs to call
updateError whenever an error state is entered or left.

const { Thing, ErrorState } = require('abstract-things');

class Example extends Thing.with(ErrorState) {

}

 cap:battery-level - monitor battery level

cap:battery-level - monitor battery level

The battery-level capability is used for things that have a battery that
can be monitored. Sometimes this capability is combined with
charging-state if the thing also can report when it is
being charged.

if(thing.matches('cap:battery-level')) {
 console.log('Current battery level:', await thing.batteryLevel());
}

API

	
batteryLevel()

	Get the current battery level as a percentage
between 0 and 100.

	Returns

	Promise that resolves to the battery level in percent.

Example:

thing.batteryLevel()
 .then(level => ...)
 .catch(...);

const level = await thing.batteryLevel();

Events

	
batteryLevelChanged

	The current battery level has changed. Payload will be the new battery
level as a percentage.

thing.on('batteryLevelChanged', batteryLevel => console.log('Battery level is now:', batteryLevel));

Protected methods

	
updateBatteryLevel(batteryLevel)

	Update the current battery level. Should be called whenever a change in
battery level is detected.

	Arguments

	
	batteryLevel (percentage) – The new battery level. Will be converted to a
percentage.

Example:

this.updateBatteryLevel(20);
this.updateBatteryLevel('10');

Implementing capability

When implementing this capability the implementor needs to call
updateBatteryLevel whenever the battery level changes.

const { Thing, BatteryLevel } = require('abstract-things');

class Example extends Thing.with(BatteryLevel) {

 initCallback() {
 return super.initCallback()
 .then(readBatteryLevelSomehow)
 .then(batteryLevel => {
 this.updateBatteryLevel(batteryLevel);
 });
 }

}

 cap:charging-state - monitor if charging

cap:charging-state - monitor if charging

The charging-state capability is used for things that have a battery and
can report if they are being charged or not. Some of these things will also
have the battery-level capability.

if(thing.matches('cap:charging-state')) {
 if(await thing.charging()) {
 // This thing is charging
 }
}

API

	
charging()

	Get the current charging state as a boolean.
true indicates that the thing is charging.

	Returns

	Promise that resolves to the current charging state.

Example:

thing.charging()
 .then(isCharging => ...)
 .catch(...);

const isCharging = await thing.charging();

Events

	
chargingChanged

	The current charging state has changed. Payload will be the new state
a boolean.

thing.on('chargingChanged', v => console.log('Charging:', v));

	
chargingStarted

	The thing is now being charged.

thing.on('chargingStarted', () => console.log('Charging started'));

	
chargingStopped

	The thing is no longer being charged.

thing.on('chargingStopped', () => console.log('Charging stopped'));

Protected methods

	
updateCharging(chargingState)

	Update the current charging state. Should be called whenever a change in
charging state is detected.

	Arguments

	
	chargingState (boolean) – The new charging state.

Example:

this.updateCharging(true);

Implementing capability

When implementing this capability the implementor needs to call
updateCharging whenever the charging state changes.

const { Thing, ChargingState } = require('abstract-things');

class Example extends Thing.with(ChargingState) {

 initCallback() {
 return super.initCallback()
 .then(readChargingStateSomehow)
 .then(chargingState => {
 this.updateCharging(chargingState);
 });
 }

}

 cap:autonomous-charging - request charging

cap:autonomous-charging - request charging

The autonomous-charging capability is used for things that have a battery
and can charge it on request. This is commonly things such as vacuum robots
that can head to a charging station to recharge.

if(thing.matches('cap:autonomous-charging')) {
 thing.charge()
 .then(() => console.log('Charging has been requested'))
 .catch(...);
}

API

	
charge()

	Request that the thing charges.

	Returns

	Promise that resolves to null

Example:

thing.charge()
 .then(...)
 .catch(...);

await thing.charge();

Protected methods

	
activateCharging()

	Activate charging of the thing. Called by charge().

	Returns

	Promise that resolves when activation is performed.

Example:

activateCharging() {
 return activateChargingSomehow();
}

Implementing capability

When implementing this capability the implementor needs to implement the
method activateCharging.

const { Thing, AutonomousCharging } = require('abstract-things');

class Example extends Thing.with(AutonomousCharging) {

 activateCharging() {
 // Create a promise that resolves when charging has been activated
 return activateChargingSomehow();
 }

}

 cap:audio-feedback - if thing emits audio feedback

cap:audio-feedback - if thing emits audio feedback

audio-feedback is used by things that can report if they emit audio
feedback or not. Such feedback can be as simple as beeping when certain buttons
are pressed or when certain actions are performed. It may also be more advanced
audio such as spoken commands. This capability is commonly paired with
adjustable-audio-feedback if the the thing
support toggling audio feedback on and off.

if(thing.matches('cap:audio-feedback')) {
 console.log('Audio feedback on:', await thing.audioFeedback());

 thing.on('audioFeedbackChanged', on => console.log('Audio feedback is now:', on));
}

API

	
audioFeedback()

	Get if the thing emits audio feedback.

	Returns

	Promise that resolves to a boolean
representing if audio feedback is enabled.

Example:

thing.audioFeedback()
 .then(on => ...)
 .catch(...);

const on = await thing.audioFeedback();

Events

	
audioFeedbackChanged

	The current audio feedback state has changed. Payload will be if the
feedback is enabled.

thing.on('audioFeedbackChanged', on => ...)

Protected methods

	
updateAudioFeedback(enabled)

	Update if audio feedback is currently enabled.

	Arguments

	
	enabled (boolean) – If the feedback is enabled.

Implementing capability

This capability requires that the implementors calls updateAudioFeedback
when changes are detected.

Example:

const { Thing, AudioFeedback } = require('abstract-things');

class Example extends Thing.with(AudioFeedback) {

}

 cap:switchable-audio-feedback - enable or disable audio feedback

cap:switchable-audio-feedback - enable or disable audio feedback

The switchable-audio-feedback-capability is an extension to the
audio-feedback-capability for things that can also
switch the audio feedback on or off.

if(thing.matches('cap:switchable-audio-feedback')) {
 console.log('Feedback is on', await thing.audioFeedback());

 // Disable the audio feedback
 await thing.audioFeedback(false);
}

API

	
audioFeedback([enabled])

	Get or set if the audio feedback is enabled.

	Arguments

	
	enabled (boolean) – Optional boolean to change audio feedback to.

	Returns

	Promise that resolves to the current audio feedback state.

Example:

// Getting returns a boolean
const noisy = await thing.audioFeedback();

// Turn audio feedback on
thing.audioFeedback(true)
 .then(on => ...)
 .catch(...);

	
setAudioFeedback(enabled)

	Set if audio feedback is enabled.

	Arguments

	
	enabled (boolean) – The new audio feedback state as a boolean.

	Returns

	Promise that resolves to the new audio feedback state.

Example:

thing.setAudioFeedback(true)
 .then(on => ...)
 .catch(...);

	
toggleAudioFeedback()

	Toggle if audio feedback is enabled.

	Returns

	Promise that resolves to the new audio feedback state.

Example:

thing.toggleAudioFeedback()
 .then(on => ...)
 .catch(...);

Implementing capability

The switchable-audio-feedback-capability requires that the function
changeAudioFeedback is implemented.

Example:

const { Thing, SwitchableAudioFeedback } = require('abstract-things');

class Example extends Thing.with(SwitchableAudioFeedback) {
 constructor() {
 super();

 // Make sure to initialize the state via updateAudioFeedback
 }

 changeAudioFeedback(enabled) {
 /*
 * This method is called whenever a audio feedback change is requested.
 */
 return switchWithPromise(enabled)
 .then(() => this.updateAudioFeedback(enabled));
 }
}

 Controllers

Controllers

Controllers are things that control other things, such as remotes and buttons.
If a thing implements the actions-capability it will emit
events when an action occurs such as a button being pressed. The actual actions
available vary from thing to thing.

Capabilities

	cap:actions - emit events on actions

Types

	type:controller - Generic controller

	type:button - Single button

	type:remote-control - Remote controls

	type:wall-controller - Controllers mounted on a wall

 cap:actions - emit events on actions

cap:actions - emit events on actions

This capability is used when a thing support emitting events when an action
such a button press occurs.

if(thing.matches('cap:actions')) {
 // This thing supports actions
 thing.on('action', action => console.log('Action occurred:', action);

 // Listen for a specific action
 thing.on('action:test', () => console.log('Test action occurred');
}

API

	
actions();()

	Get the actions that the thing supports.

	Returns

	Promise that resolves to any array containing the actions as
codes.

Example:

const actions = await thing.actions();

const action = actions[0];
console.log('First action id:', action.id);

Events

	
actionsChanged

	The available actions have changed. Payload will be the same value that
will be returned by the values attribute.

Example:

thing.on('actionsChanged', actions => console.log('Actions are now:', actions);

	
action

	An action has occurred. The payload is an object with the keys:

	action - the identifier of the action

	data - optional data of the action

Example:

thing.on('action', e => console.log('Action', e.action, 'with data', e.data));

	
action:<id>

	An action of type <id> has occurred. <id> will be a supported
action, see the actions attribute for supported actions.

thing.on('action:test', () => console.log('Test action occurred'));

Protected methods

	
updateActions(actions)

	Update the available actions.

	Arguments

	
	actions (array) – The actions that this thing supports. Each item in the array will be
converted to code.

Example:

this.updateActions([
 'button1',
 { id: 'button2', description: 'Optional description' },
 'button3: Description for button 3'
]);

	
emitAction(action[, data])

	Emit an action with the given identifier. Optionally provide some extra
data.

	Arguments

	
	action (string) – The action that should be emitted.

	data (mixed) – The optional data to include with the action event.

Example:

this.emitAction('button1');
this.emitAction('rotated', { amount: 45 });

Implementing capability

When implementing this capability updateActions need to be called with the
available actions. When an action occurrs the method emitAction needs to
be called.

Example:

const { Thing } = require('abstract-things');
const { Actions } = require('abstract-things/contollers');

class Example extends Thing.with(Actions) {
 initCallback() {
 return super.initCallback()
 .then(() => this.updateActions(actionsDetected));
 }
}

 type:controller - Generic controller

type:controller - Generic controller

The controller type is used for things that are controllers and can be
combined with more specific types.

Controllers commonly emit events and implement the
actions-capability.

if(thing.matches('type:controller')) {
 // This is a wall controller

 if(thing.matches('cap:actions')) {
 // Controller supports listening for actions
 }
}

Implementing type

const { Controller, Actions } = require('abstract-things/controllers');

class Example extends Controller.with(Actions, ...) {

}

 type:button - Single button

type:button - Single button

If a thing is a single button the type button is commonly used.
Buttons may emit events when buttons are pressed while implementing
the actions-capability. Buttons are automatically marked as
controllers.

if(thing.matches('type:button')) {
 // This is a button

 if(thing.matches('cap:actions')) {
 // Button supports listening for actions
 }
}

Implementing type

const { Button, Actions } = require('abstract-things/controllers');

class Example extends Button.with(Actions, ...) {

}

 type:remote-control - Remote controls

type:remote-control - Remote controls

Remote controls are marked with the type remote-control. Many remote
controls are capable of emitting events when buttons are pressed and implement
the actions-capability. Remote controls are automatically
marked as controllers.

if(thing.matches('type:remote-control')) {
 // This is a remote control

 if(thing.matches('cap:actions')) {
 // Remote control supports listening for actions
 }
}

Implementing type

const { RemoteControl, Actions } = require('abstract-things/controllers');

class Example extends RemoteControl.with(Actions, ...) {

}

 type:wall-controller - Controllers mounted on a wall

type:wall-controller - Controllers mounted on a wall

wall-controller is used for controllers that are commonly mounted on a
wall, such as switches and scene controllers. Wall controllers are
automatically marked as controllers.

Wall controllers may emit events when buttons are pressed while implementing
the actions-capability.

if(thing.matches('type:wall-controller')) {
 // This is a wall controller

 if(thing.matches('cap:actions')) {
 // Controller supports listening for actions
 }
}

Implementing type

const { WallController, Actions } = require('abstract-things/controllers');

class Example extends WallController.with(Actions, ...) {

}

 Lights

Lights

The main type for lights is light. Lights commonly use at least the
switchable-power capability.

if(thing.matches('type:light', 'cap:switchable-power')) {
 thing.power(true)
 .then(() => console.log('powered on'))
 .catch(err => console.log('error occurred', err));
}

Topics

	Implementing lights

	type:light-bulb - Light bulbs

	type:light-strip - Light strips

Capabilities

	cap:fading - support for fading changes

	cap:brightness - read brightness

	cap:dimmable - change brightness

	cap:colorable - coloring of lights

	cap:color:temperature - light supports temperature

	cap:color:full - light supports full range of color

 Implementing lights

Implementing lights

Protected methods

	
setLightState(state)

	Set the state of the light. Light capabilities use this as a hook for
restoring state. If this is not overriden capabilities implement a default
behavior.

	Arguments

	
	state (object) – The state to set.

	Returns

	Promise that resolves when the state is set.

Example:

Power switching

To support proper restoring of power the implementors of lights should use
a custom SwitchablePower:

const { Light, SwitchablePower } = require('abstract-things/lights');

class Example extends Light.with(SwitchablePower) {

 changePower(power) {
 return changePowerOfLight(power);
 }

}

 type:light-bulb - Light bulbs

type:light-bulb - Light bulbs

The type light-bulb is a marker used to mark lights that are of the bulb
type.

if(thing.matches('cap:light-bulb')) {
 // The thing is a light bulb
}

Implementing capability

Light bulbs are an extension to lights and need to
follow the same implementation guidelines.

const { LightBulb, SwitchablePower } = require('abstract-things/lights');

class Example extends LightBulb.with(SwitchablePower) {

 changePower(power) {
 return changePowerOfLight(power);
 }

}

 type:light-strip - Light strips

type:light-strip - Light strips

The type light-bulb is a marker used to mark lights that are of the strip
type.

if(thing.matches('cap:light-strip')) {
 // The thing is a light strip
}

Implementing capability

Light strips are an extension to lights and need to
follow the same implementation guidelines.

const { LightStrip, SwitchablePower } = require('abstract-things/lights');

class Example extends LightStrip.with(SwitchablePower) {

 changePower(power) {
 return changePowerOfLight(power);
 }

}

 cap:fading - support for fading changes

cap:fading - support for fading changes

Capability used to mark lights that support fading of changes. When this
capability is present the duration argument for other methods is available.

if(thing.matches('type:light', 'cap:fading')) {
 // This light supports fading
 const time = await this.maxChangeTime();
 console.log('Maximum fading time in milliseconds:', time.ms);
}

API

	
maxChangeTime

	The maximum duration of time a change can be.

Protected methods

	
updateMaxChangeTime(time)

	
	Arguments

	
	time (duration) – The maximum time the light can fade as a
duration.

Example:

this.updateMaxChangeTime('20s');

Implementing capability

Implementing this capability requires that the maximum change time is set
either in the constructor or in the initCallback().

Example:

const { Light, Fading } = require('abstract-things/lights');

class Example extends Light.with(Fading) {

 initCallback() {
 return super.initCallback()
 // Set the maximum change time to 5 seconds
 .then(() => this.updateMaxChangeTime('5s'));
 }

}

 cap:brightness - read brightness

cap:brightness - read brightness

Capability used when a light supports reading the brightness. Usually this is
combined with dimmable for lights that can actually change
their brightness.

if(thing.matches('cap:brightness')) {
 console.log(await thing.brightness());
}

API

	
brightness()

	Get the brightness of the light.

	Returns

	Promise that resolves to a percentage
between 0 and 100, representing the brightness.

Example:

console.log(await thing.brightness());

Events

	
brightnessChanged

	Brightness has changed. The payload of the event will be the brightness as
a percentage.

thing.on('brightnessChanged', bri => console.log('Brightness is now', bri));

Protected functions

	
updateBrightness(brightness)

	Update the current brightness. Should be called whenever the brightness
has been detected to have changed.

	Arguments

	
	brightness (number) – The new brightness as a percentage.

Implementing capability

This capability has no functions that need to be implemented. Things using
the capability should call updateBrightness whenever the brightness
changes.

const { Light, Brightness } = require('abstract-things/lights');

class Example extends Light.with(Brightness) {

 initCallback() {
 return super.initCallback()
 .then(() => this.updateBrightness(initialBrightnessHere));
 }

}

 cap:dimmable - change brightness

cap:dimmable - change brightness

Capability used when a light supports changing the brightness, extends
brightness-capability.

if(thing.matches('cap:dimmable')) {
 // Get the current brightness
 console.log(await thing.brightness());

 // Set the current brightness
 const newBrightness = await thing.brightness(10);
}

API

	
brightness([brightnessChange[, duration]])

	Get or change the brightness of the light. Setting the brightness to zero
will power off the light. Setting the brightness to non-zero such as when
increasing the brightness will turn it on.

	Arguments

	
	brightnessChange (percentage) – Optional brightness percentage to set as a
number or a change in brightness as a string. 20 would be 20%
brightness, '+10' would be an increase of 10%.

	duration (Duration) – Optional duration to perform change in
brightness over. Supported when the light has the
fading-capability.

	Returns

	Promise that resolves to the current or the set brightness.

Example:

// Get the current brightness
const currentBrightness = thing.brightness();

// Set a specific brightness
thing.brightness(20)
 .then(bri => console.log('Brightness is now', bri))
 .catch(err => console.log('Error while setting', err));

// Increase the brightness
thing.brightness('+10')
 .then(...)
 .catch(...);

// Set the brightness over 2 seconds (if cap:fading)
thing.brightness(70, '2s')
 .then(...)
 .catch(...);

	
setBrightness(brightness[, duration])

	Set the brightness of the light. Setting the brightness to zero will
power off the light. Setting the brightness to non-zero such as when
increasing the brightness will turn it on.

	Arguments

	
	brightness (percentage) – The brightness as a percentage the light
should try to set.

	duration (Duration) – Optional duration to perform change in
brightness over. Supported when the light has the
fading-capability.

	Returns

	Promise resolving to the new brightness.

Example:

thing.setBrightness(20)
 .then(bri => console.log('Brightness is now', bri))
 .catch(err => console.log('Error while setting', err));

	
increaseBrightness(amount[, duration])

	Increase the brightness of the light. This will turn on the light.

	Arguments

	
	amount (percentage) – The amount as a percentage to increase the
brightness.

	duration (Duration) – Optional duration to perform change in
brightness over. Supported when the light has the
fading-capability.

	Returns

	Promise that resolves to the new brightness.

Example:

thing.increaseBrightness(15)
 .then(bri => console.log('Brightness is now', bri))
 .catch(err => console.log('Error while setting', err));

	
decreaseBrightness(amount[, duration])

	Decrease the brightness of the light. Decreasing to zero will power off
the light.

	Arguments

	
	amount (percentage) – The amount as a percentage to decrease the
brightness.

	duration (Duration) – Optional duration to perform change in
brightness over. Supported when the light has the
fading-capability.

	Returns

	Promise that resolves to the new brightness.

Example:

thing.decreaseBrightness(15)
 .then(bri => console.log('Brightness is now', bri))
 .catch(err => console.log('Error while setting', err));

Protected methods

	
changeBrightness(targetBrightness, options)

	Abstract. Change the brightness of the light. Implementations need to
supports the following:

	If targetBrightness is zero the light should be turned off.

	If options.powerOn is true the light should be powered on.

	options.duration should be respected if the light supports fading.

	Arguments

	
	targetBrightness (number) – The percentage the brightness should be.

	options – Options for changing the brightness. Two options are available,
duration (of type duration) which is the
requested duration of the change and powerOn (of type
boolean) which indicates if the power should
be switched on if the thing is off.

	Returns

	Promise if change is asynchronous.

Example:

changeBrightness(targetBrightness, options) {
 const duration = options.duration.ms;
 const shouldPowerOn = options.powerOn;

 return ...
}

Implementing capability

In addition to updating the brightness whenever it changes externally as
outlined in the brightness-capability. The method
changeBrightness needs to be implemented.

const { Light, Dimmable } = require('abstract-things/lights');

class Example extends Light.with(Dimmable) {

 changeBrightness(targetBrightness, options) {
 // Duration to use if this light supports fading
 const duration = options.duration.ms;

 // If the light should be powered on if it is off
 const shouldPowerOn = options.powerOn;

 // Lazy way to handle turning the light on if is switchable
 let promise;
 if(shouldPowerOn && ! this.state.power) {
 promise = this.turnOn();
 } else if(brightness <= 0) {
 promise = this.turnOff();
 } else {
 promise = Promise.resolve();
 }

 // Then actually change the brightness
 return promise
 .then(() => actuallyChangeBrightness(...))
 .then(() => this.updateBrightness(targetBrightness));
 }

}

 cap:colorable - coloring of lights

cap:colorable - coloring of lights

Capability used for lights that can be colored.

if(thing.matches('type:light', 'cap:colorable')) {
 console.log('Current color', await thing.color());

 // Set the color
 await thing.color('red');
}

API

	
color([color[, duration]])

	Get the current color or change the color of the light.

	Arguments

	
	color – Optional color to set. The color can be
specified in many formats, hex values such as #00ff00, color names
such as red and blue, and color temperatures such as 4000K
or overcast.

	duration (Duration) – Optional duration to perform change in
brightness over. Supported when the light has the
fading-capability.

	Returns

	Promise that resolves to the current or set color.

Example:

// Get the current color
const currentColor = await thing.color();

// Change color
const newColor = await thing.color('4000K');

// Change color over 2 seconds
await thing.color('#00ffff', '2s');

Events

	
colorChanged

	Color has changed. Payload will be the new color.

thing.on('colorChanged', color => console.log('Color is now', color));

Protected methods

	
updateColor(color)

	Update the current color of the light. Should be called whenever a change
in color occurs for the light. If the color set has changed this will emit
the color event.

	Arguments

	
	color – The color of the light.

this.updateColor('#ff00aa');

const { color } = require('abstract-things/values');
this.updateColor(color.rgb(255, 0, 170));

	
changeColor(color, options)

	Abstract. Change the color of the light.
Implementation should support the following:

	color should be converted to something supported by the light.

	options.duration should be respected if the light supports fading.

	Arguments

	
	color – The new color of the light. The colorspace of
the light can be be anything, but is most commonly temperatures or
rgb-values.

	options – Options for changing the color. The only option available is
duration which indicates amount of time the change should occur
over.

	Returns

	Promise if change is asynchronous.

Implementing capability

Implementations should call updateColor whenever the color of the light
changes. changeColor needs to be implemented and will be called whenever a
color change is requested. color:temperature and
color:full should be implemented to indicate the type of
color supported.

const { Light, Colorable, ColorFull } = require('abstract-things/lights');
const { color } = require('abstract-things/values');

class Example extends Light.with(Colorable, ColorFull) {

 initCallback() {
 return super.initCallback()
 .then(() => this.updateColor(color.rgb(0, 0, 0));
 }

 changeColor(color, options) {
 // Convert color to RGB colorspace
 const rgb = color.rgb;

 return setColorSomehow(rgb, options.duration);
 }
}

 cap:color:temperature - light supports temperature

cap:color:temperature - light supports temperature

Capability used to mark lights that support setting color temperature natively.

if(thing.matches('cap:color:temperature')) {
 console.log('Range is', thing.colorTemperatureRange);
}

API

	
colorTemperatureRange

	Get the range of temperatures this color supports.

	Returns

	Object with min and max in Kelvin.

Example:

console.log('Min temperature:', thing.colorTemperatureRange.min);
console.log('Max temperature:', thing.colorTemperatureRange.max);

Events

	
colorTemperatureRangeChanged

	The range of temperature the light supports has changed.

thing.on('colorTemperatureRangeChanged', range => console.log('Range is now', range));

Protected methods

	
updateColorTemperatureRange(min, max)

	Set the color temperature range the light support.

	Arguments

	
	min (number) – The minimum color temperature in Kelvin.

	max (number) – The maximum color temperature in Kelvin.

Implementing capability

Implementors of this capability should call setColorTemperatureRange
either in the constructor or initCallback.

Example:

const { Light, ColorTemperature } = require('abstract-things/lights');

class Example extends Light.with(ColorTemperature) {

 constructor() {
 super();

 this.updateColorTemperatureRange(2000, 5000);
 }

}

 cap:color:full - light supports full range of color

cap:color:full - light supports full range of color

Capability used to mark lights that support setting any color.

if(thing.matches('type:light', 'cap:color:full')) {
 // This light supports any color
}

Implementing capability

Implementors of this capability have no special requirements placed upon them.

Example:

const { Light, ColorFull } = require('abstract-things/lights');

class Example extends Light.with(ColorFull) {

 constructor() {
 super();
 }

}

 Sensors

Sensors

The type sensor is used to mark things that read one or more values.

if(thing.matches('type:sensor') {
 console.log('Sensor values:', thing.values());
}

if(thing.matches('type:sensor', 'cap:temperature')) {
 console.log('Temperature:', thing.temperature());
}

Capabilities

	cap:atmospheric-pressure - read atmospheric pressure

	cap:carbon-dioxide-detection - detect abnormal CO2 levels

	cap:carbon-dioxide-level - read carbon dioxide level

	cap:carbon-monoxide-detection - detect abnormal CO levels

	cap:carbon-monoxide-leve - read carbon monoxide level

	cap:contact-detection - contact sensing

	cap:illuminance - read illuminance

	cap:motion-detection - motion sensing

	cap:pm2.5 - read PM2.5 density (air quality)

	cap:pm10 - read PM10 density (air quality)

	cap:power-consumed - read power consumed

	cap:power-load - read the current power load

	cap:relative-humidity - read humidity of air

	cap:smoke-detection - detect smoke

	cap:temperature - read temperature

	cap:voltage - read voltage of something

	cap:water-detection - detect water

 cap:atmospheric-pressure - read atmospheric pressure

cap:atmospheric-pressure - read atmospheric pressure

This capability is used to mark sensors that report the atmospheric pressure.

if(thing.matches('cap:atmospheric-pressure')) {
 console.log('Atmospheric pressure:', await thing.atmosphericPressure());
}

API

	
atmosphericPressure()

	Get the current atmospheric pressure.

	Returns

	Promise that resolves to the atmospheric pressure as a
pressure.

Example:

console.log('Atmospheric pressure:', await thing.atmosphericPressure());

Events

	
atmosphericPressureChanged

	The atmospheric pressure has changed.

Example:

thing.on('atmosphericPressureChanged', value => console.log('Pressure changed to:', value));

Protected methods

	
updateAtmosphericPressure(value)

	Update the current atmospheric pressure. Should be called whenever a change
in atmospheric pressure is detected.

	Arguments

	
	value – The new atmospheric pressure.

Example:

// Defaults to pascals
this.updateAtmosphericPressure(101325);

// pressure value can be used to use hPa (= millibar), bar, psi or mmHg
const { pressure } = require('abstract-things/values');
this.updateAtmosphericPressure(pressure(1, 'atm'));
this.updateAtmosphericPressure(pressure(1013, 'hPa'));

Implementing capability

Implementors of this capability should call updateAtmosphericPressure
whenever the atmospheric pressure changes.

const { Sensor, AtmosphericPressure } = require('abstract-things/sensors');

class Example extends Sensor.with(AtmosphericPressure) {

 constructor() {
 super();

 this.updateAtmosphericPressure(101325);
 }

}

 cap:carbon-dioxide-detection - detect abnormal CO2 levels

cap:carbon-dioxide-detection - detect abnormal CO2 levels

This capability is used to mark sensors that monitor the presence of carbon
dioxide in abnormal quantities. The threshold at which to trigger the
detection is up to the sensor.

if(thing.matches('cap:carbon-dioxide-detection')) {
 console.log('Detected CO2:', await thing.carbonDioxideDetected());

 thing.on('carbonDioxide', () => console.log('CO2 has been detected'));
 thing.on('carbonDioxideDetected', () => console.log('CO2 is no longer detected'));
}

API

	
carbonDioxideDetected()

	Get if carbon dioxide is being detected.

	Returns

	Promise that resolves to a boolean indicating
if carbon dioxide is currently being detected.

Example:

// Using async/await
const carbonDioxidePresent = await thing.carbonDioxideDetected();

// Using promise then/catch
thing.carbonDioxideDetected()
 .then(carbonDioxidePresent => ...)
 .catch(...);

Events

	
carbonDioxideDetectedChanged

	The current carbon dioxide detection status has changed.

thing.on('carbonDioxideDetectedChanged', value => console.log('Detection changed to:', value));

	
carbonDioxide

	Emitted when carbon dioxide has been detected and carbonDioxideDetected() changes to true.

thing.on('carbonDioxide', () => console.log('CO2 detected'));

	
carbonDioxideCleared

	Emitted when carbon dioxide is no longer detected and carbonDioxideDetected changes to
false.

thing.on('carbonDioxideCleared', () => console.log('Carbon dioxide no longer detected'));

Protected methods

	
updateCarbonDioxideDetected(value[, autoIdleTimeout])

	Update the current carbon dioxide detected status.

	Arguments

	
	value (boolean) – The carbon dioxide detected status, true if carbon dioxide detected
otherwise false.

	autoIdleTimeout (duration) – Optional duration to switch back the carbon dioxide detection status
to false.

Example:

this.updateCarbonDioxideDetected(false);

this.updateCarbonDioxideDetected(true, '20s');

Implementing capability

Implementors of this capability should call updateCarbonDioxideDetected when
carbon dioxide is detected. Implementations may choose between using automatic timeouts
for switching carbonDioxide detected status back to false or managing the switching
on their own.

const { Sensor, CarbonDioxideDetection } = require('abstract-things/sensors');

class Example extends Sensor.with(CarbonDioxideDetection) {

 constructor() {
 super();

 this.updateCarbonDioxideDetected(true, '1m');
 }

}

 cap:carbon-dioxide-level - read carbon dioxide level

cap:carbon-dioxide-level - read carbon dioxide level

This capability is used to mark sensors that report their carbon dioxide level
as PPM (parts per million). The value is reported as a number.

if(thing.matches('cap:carbon-dioxide-level')) {
 console.log('Carbon dioxide:', await thing.carbonDioxideLevel());

 thing.on('carbonDioxideLevelChanged', v => console.log('Changed to:', v));
}

API

	
carbonDioxideLevel()

	Get the current carbon dioxide levels as PPM.

	Returns

	Promise that resolves to the current value as a
number.

Example:

console.log('CO2 is:', await thing.carbonDioxideLevel());

	
co2Level()

	Get the current carbon dioxide levels as PPM. Reported as a
number.

	Returns

	Promise that resolves to the current value as a
number.

Example:

console.log('CO2 is:', await thing.co2Level());

Events

	
carbonDioxideLevelChanged

	The carbon dioxide level has changed. Payload is the new PPM as a
number.

Example:

thing.on('carbonDioxideLevelChanged', v => console.log('Changed to:', v));

Protected methods

	
updateCarbonDioxideLevel(value)

	Update the current carbon dioxide level. Should be called whenever a change
in PPM is detected.

	Arguments

	
	value – The new PPM value. Will be converted to a number.

Example:

this.updateCarbonDioxideLevel(389);

Implementing capability

Implementors of this capability should call updateCarbonDioxideLevel
whenever the PPM of carbon dioxide changes.

const { Sensor, CarbonDioxideLevel } = require('abstract-things/sensors');

class Example extends Sensor.with(CarbonDioxideLevel) {

 constructor() {
 super();

 this.updateCarbonDioxideLevel(390);
 }

}

 cap:carbon-monoxide-detection - detect abnormal CO levels

cap:carbon-monoxide-detection - detect abnormal CO levels

This capability is used to mark sensors that monitor the presence of carbon
monoxide in abnormal quantities. The threshold at which to trigger the
detection is up to the sensor.

if(thing.matches('cap:carbon-monoxide-detection')) {
 console.log('Detected CO:', await thing.carbonMonoxideDetected());

 thing.on('carbonMonoxide', () => console.log('CO has been detected'));
 thing.on('carbonMonoxideDetected', () => console.log('CO is no longer detected'));
}

API

	
carbonMonoxideDetected()

	Get if carbon monoxide is being detected.

	Returns

	Promise that resolves to a boolean indicating
if carbon monoxide is currently being detected.

Example:

// Using async/await
const carbonMonoxidePresent = await thing.carbonMonoxideDetected();

// Using promise then/catch
thing.carbonMonoxideDetected()
 .then(carbonMonoxidePresent => ...)
 .catch(...);

Events

	
carbonMonoxideDetectedChanged

	The current carbon monoxide detection status has changed.

thing.on('carbonMonoxideDetectedChanged', value => console.log('Detection changed to:', value));

	
carbonMonoxide

	Emitted when carbon monoxide has been detected and carbonMonoxideDetected() changes to true.

thing.on('carbonMonoxide', () => console.log('CO detected'));

	
carbonMonoxideCleared

	Emitted when carbon monoxide is no longer detected and carbonMonoxideDetected changes to
false.

thing.on('carbonMonoxideCleared', () => console.log('Carbon monoxide no longer detected'));

Protected methods

	
updateCarbonMonoxideDetected(value[, autoIdleTimeout])

	Update the current carbon monoxide detected status.

	Arguments

	
	value (boolean) – The carbon monoxide detected status, true if carbon monoxide detected
otherwise false.

	autoIdleTimeout (duration) – Optional duration to switch back the carbon monoxide detection status
to false.

Example:

this.updateCarbonMonoxideDetected(false);

this.updateCarbonMonoxideDetected(true, '20s');

Implementing capability

Implementors of this capability should call updateCarbonMonoxideDetected when
carbon monoxide is detected. Implementations may choose between using automatic timeouts
for switching carbonMonoxide detected status back to false or managing the switching
on their own.

const { Sensor, CarbonMonoxideDetection } = require('abstract-things/sensors');

class Example extends Sensor.with(CarbonMonoxideDetection) {

 constructor() {
 super();

 this.updateCarbonMonoxideDetected(true, '1m');
 }

}

 cap:carbon-monoxide-leve - read carbon monoxide level

cap:carbon-monoxide-leve - read carbon monoxide level

This capability is used to mark sensors that report their carbon monoxide level
as PPM (parts per million). The value is reported as a number.

if(thing.matches('cap:carbon-monoxide-level')) {
 console.log('Carbon monoxide:', await thing.carbonMonoxideLevel());

 thing.on('carbonMonoxideLevelChanged', v => console.log('Changed to:', v));
}

API

	
carbonMonoxideLevel()

	Get the current carbon monoxide levels as PPM.

	Returns

	Promise that resolves to the current value as a
number.

console.log('CO is:', await thing.carbonMonoxideLevel());

	
coLevel()

	Get the current carbon monoxide levels as PPM.

	Returns

	Promise that resolves to the current value as a
number.

console.log('CO is:', await thing.coLvel());

Events

	
carbonMonoxideChanged

	The carbon monoxide level has changed. Payload is the new PPM as a
number.

Example:

thing.on('carbonMonoxideChanged', v => console.log('Changed to:', v));

Protected methods

	
updateCarbonMonoxideLevel(value)

	Update the current carbon monoxide level. Should be called whenever a change
in PPM is detected.

	Arguments

	
	value – The new PPM value. Will be converted to a number.

Example:

this.updateCarbonMonoxideLevel(0);

Implementing capability

Implementors of this capability should call updateCarbonMonoxideLevel
whenever the PPM of carbon monoxide changes.

const { Sensor, CarbonMonoxideLevel } = require('abstract-things/sensors');

class Example extends Sensor.with(CarbonMonoxideLevel) {

 constructor() {
 super();

 this.updateCarbonMonoxideLevel(0);
 }

}

 cap:contact-detection - contact sensing

cap:contact-detection - contact sensing

This capability is used to mark sensors that report if contact is
detected, such as for door and window sensors that detect if the door or
window is open.

if(thing.matches('cap:contact-detection')) {
 console.log('Has contact:', await thing.contactDetected());

 thing.on('contactDetectedChanged', v => console.log('Contact is now:', c));
}

API

	
contactDetected()

	Boolean representing if the sensor is currently
detecting contact.

	Returns

	Promise that resolves to if the sensor is detecting contact.

Example:

if(await thing.contactDetected()) {
 console.log('Thing has detected contact');
}

	
isOpen()

	Boolean representing if the sensor is currently
open (not detecting contact).

	Returns

	Promise that resolves to if the sensor is in an open state.

Example:

console.log('Is open:', await thing.isOpen());

	
isClosed()

	Boolean representing if the sensor is currently
closed (detecting contact).

	Returns

	Promise that resolves to if the sensir is in a closed state.

Example:

console.log('Is closed:', await thing.isClosed());

Events

	
contactDetectedChanged

	The contact value has changed. Payload is the new contact state as a
boolean.

Example:

thing.on('contactDetectedChanged', v => console.log('Contact is now:', c));

	
opened

	The sensor has detected it is does not have contact and is now opened.

Example:

thing.on('opened', v => console.log('Sensor is now open'));

Protected methods

	
updateContactDetected(value)

	Update if the sensor is currently detecting contact.

	Arguments

	
	value – The new contact status as a boolean.

	autoIdleTimeout (duration) – Optional duration to switch back the contact detection status to false.

Example:

// Set the sensor to contact not detected (open)
this.updateContactDetected(false);

this.updateContactDetected(true, '1m');

Implementing capability

Implementors of this capability should call updateContact whenever the
contact state changes.

const { Sensor, ContactDetection } = require('abstract-things/sensors');

class Example extends Sensor.with(ContactDetection) {

 constructor() {
 super();

 this.updateContactDetected(true);
 }

}

 cap:illuminance - read illuminance

cap:illuminance - read illuminance

This capability is used to mark sensors that report
illuminance. This is commonly used for sensors
that read light levels.

if(thing.matches('cap:illuminance')) {
 console.log('Light level:', await thing.illuminance());
}

API

	
illuminance()

	Get the current illuminance.

	Returns

	Promise that resolves to the current
illuminance.

Example:

const lightLevel = await thing.illuminance();
console.log('Light level:', lightLevel.lux);

Events

	
illuminanceChanged

	The illuminance has changed. Payload is the new illuminance.

Example:

thing.on('illuminanceChanged', v => console.log('Changed to:', v));

Protected methods

	
updateIlluminance(value)

	Update the current illuminance level. Should be called whenever a change in
is detected.

	Arguments

	
	value – The new illuminance. Will be converted to
illuminance, the default conversion uses
lux.

Example:

this.updateIlluminance(20);

Implementing capability

Implementors of this capability should call updateIlluminance whenever the
detected light level changes.

const { Sensor, Illuminance } = require('abstract-things/sensors');

class Example extends Sensor.with(Illuminance) {

 constructor() {
 super();

 this.updateIlluminance(10);
 }

}

 cap:motion-detection - motion sensing

cap:motion-detection - motion sensing

This capability is used to mark sensors that monitor movement.

if(thing.matches('cap:motion-detection')) {
 console.log('Detected motion:', await thing.motionDetected());

 thing.on('movement', () => console.log('Motion detected'));
 thing.on('inactivity', () => console.log('Inactivity detected'));
}

API

	
motionDetected()

	Get the motion status.

	Returns

	Promise that resolves to a boolean indicating
if movement is currently detected.

Example:

// Using async/await
console.log('Motion is:', awwait thing.motionDetected());

Events

	
motionDetectedChanged

	The current motion status has changed.

thing.on('motionDetectedChanged', value => console.log('Motion changed to:', value));

	
movement

	Emitted when movement has been detected and motion changes to true.

thing.on('movement', () => console.log('Movement detected'));

	
inactivity

	Emitted when movement is no longer detected and motion changes to
false.

thing.on('inactivity', () => console.log('Movement no longer detected'));

Protected methods

	
updateMotionDetected(value[, autoIdleTimeout])

	Update the current motion status.

	Arguments

	
	value (boolean) – The motion status, true if motion detected otherwise false.

	autoIdleTimeout (duration) – Optional duration to switch back the motion status to false.

Example:

this.updateMotionDetected(false);

// Set motion to true and automatically switch back after 20 seconds
this.updateMotionDetected(true, '20s');

Implementing capability

Implementors of this capability should call updateMotion if motion is
detected. Implementations may choose between using automatic timeouts for
switching motion back to false or managing the switchin on their own.

const { Sensor, MotionDetection } = require('abstract-things/sensors');

class Example extends Sensor.with(MotionDetection) {

 constructor() {
 super();

 this.updateMotionDetected(true, '1m');
 }

}

 cap:pm2.5 - read PM2.5 density (air quality)

cap:pm2.5 - read PM2.5 density (air quality)

This capability is used to mark sensors that monitor fine particulate matter
(PM) of up to 2.5 micrometers (μm).

if(thing.matches('cap:pm2.5')) {
 console.log('PM2.5:', await thing.pm2_5());
}

API

	
pm2_5()

	Get the current PM2.5 as micrograms per cubic meter (μg/m³). Value is a
number.

	Returns

	The current value as micrograms per cubic meter (μg/m³). Value is a
number.

Example:

console.log('PM2.5:', await thing.pm2_5());

	
'pm2.5'()

	Get the current PM2.5 as micrograms per cubic meter (μg/m³). Value is a
number.

	Returns

	The current value as micrograms per cubic meter (μg/m³). Value is a
number.

Example:

console.log('PM2.5:', await thing['pm2.5']());

Events

	
pm2.5Changed

	The PM2.5 has changed. Payload is a number with
the new PM2.5 as micrograms per cubic meter (μg/m³).

Example:

thing.on('pm2.5Changed', v => console.log('Changed to:', v));

Protected methods

	
updatePM2_5(value)

	Update the current PM2.5 as micrograms per cubic meter (μg/m³). Should be
called whenever a change is detected.

	Arguments

	
	value – The new PM2.5 value. Will be converted to a
number.

Example:

this.updatePM2_5(10);

Implementing capability

Implementors of this capability should call updatePM2_5 whenever the
detected PM2.5 changes.

const { Sensor, PM2_5 } = require('abstract-things/sensors');

class Example extends Sensor.with(PM2_5) {

 constructor() {
 super();

 this.updatePM2_5(10);
 }

}

 cap:pm10 - read PM10 density (air quality)

cap:pm10 - read PM10 density (air quality)

This capability is used to mark sensors that monitor particulate matter (PM)
between 2.5 and 10 micrometers (μm).

if(thing.matches('cap:pm10')) {
 console.log('PM10:', await thing.pm10());
}

API

	
pm10()

	Get the current PM10 as micrograms per cubic meter (μg/m³).

	Returns

	The current value as micrograms per cubic meter (μg/m³). Value is a
number.

Example:

console.log('PM10:', await thing.pm10());

Events

	
pm10Changed

	The PM10 has changed. Payload is a number with
the new PM10 as micrograms per cubic meter (μg/m³).

Example:

thing.on('pm10Changed', v => console.log('Changed to:', v));

Protected methods

	
updatePM10(value)

	Update the current PM10 as micrograms per cubic meter (μg/m³). Should be
called whenever a change is detected.

	Arguments

	
	value – The new PM10 value. Will be converted to a
number.

Example:

this.updatePM10(5);

Implementing capability

Implementors of this capability should call updatePM10 whenever the
detected PM10 changes.

const { Sensor, PM10 } = require('abstract-things/sensors');

class Example extends Sensor.with(PM10) {

 constructor() {
 super();

 this.updatePM10(5);
 }

}

 cap:power-consumed - read power consumed

cap:power-consumed - read power consumed

This capability is used to mark sensors that report power consumed by something.

if(thing.matches('cap:power-consumed')) {
 const powerConsumed = await thing.powerConsumed();
 console.log('Power consumed:', powerConsumed.wattHours);
}

API

	
powerConsumed()

	Get the current amount of power consumed.
.

	Returns

	Promise that resolves to the amount of power consumed as
energy.

Example:

const powerConsumed = await thing.powerConsumed();
console.log('Power consumed:', powerConsumed.wattHours);

Events

	
powerConsumedChanged

	The amount of power consumed has changed. Payload is the power consumed
as energy.

Example:

thing.on('powerConsumedChanged', v => console.log('Changed to:', v));

Protected methods

	
updatePowerConsumed(value)

	Update the power consumed. Should be called whenever a change is detected.

	Arguments

	
	value – The new amount of power consumed, as energy.
The default unit is joules.

Example:

const { energy } = require('abstract-things/values');
this.updatePowerConsumed(energy(0.5, 'wh'));

Implementing capability

Implementors of this capability should call updatePowerConsumed whenever
the power consumed changes.

const { Sensor, PowerConsumed } = require('abstract-things/sensors');

class Example extends Sensor.with(PowerConsumed) {

 constructor() {
 super();

 this.updatePowerConsumed(10); // Joules
 }

}

 cap:power-load - read the current power load

cap:power-load - read the current power load

This capability is used to mark sensors that report power load, that is the
power currently being used.

if(thing.matches('cap:power-load')) {
 const powerLoad = await thing.powerLoad();
 console.log('Power load:', powerLoad.watts);
}

API

	
powerLoad()

	Get the current amount of power being used.

	Returns

	Promise that resolves to the current amount of power used as a
power.

Example:

const powerLoad = await thing.powerLoad();
console.log('Power load:', powerLoad.watts);

Events

	
powerLoadChanged

	The amount of power being used has changed. Payload is the power load
as power.

Example:

thing.on('powerLoadChanged', v => console.log('Changed to:', v));

Protected methods

	
updatePowerLoad(value)

	Update the power load. Should be called whenever a change is detected.

	Arguments

	
	value – The new amount of power being used, as power.
The default unit is watts.

Example:

this.updatePowerLoad(5);

Implementing capability

Implementors of this capability should call updatePowerLoad whenever
the power load changes.

const { Sensor, PowerLoad } = require('abstract-things/sensors');

class Example extends Sensor.with(PowerLoad) {

 constructor() {
 super();

 this.updatePowerLoad(10);
 }

}

 cap:relative-humidity - read humidity of air

cap:relative-humidity - read humidity of air

This capability is used to mark sensors that report the relative humidity of
the air.

if(thing.matches('cap:relative-humidity')) {
 console.log('RH:', await thing.relativeHumidity());
}

API

	
relativeHumidity()

	Get the current relative humidity as a percentage.

	Returns

	Promise that resolves to the current relative humidity as a
percentage.

Example:

console.log('RH:', await thing.relativeHumidity());

Events

	
relativeHumidityChanged

	The relative humidity has changed. Payload is the new humidity as a
percentage.

Example:

thing.on('relativeHumidityChanged', v => console.log('Changed to:', v));

Protected methods

	
updateRelativeHumidity(value)

	Update the relative humidity. Should be called whenever a change is detected.

	Arguments

	
	value – The new relative humidity. Will be converted to a
percentage.

Example:

this.updateRelativeHumidity(32);

Implementing capability

Implementors of this capability should call updateRelativeHumidity whenever
the relative humidity changes.

const { Sensor, RelativeHumidity } = require('abstract-things/sensors');

class Example extends Sensor.with(RelativeHumidity) {

 constructor() {
 super();

 this.updateRelativeHumidity(56);
 }

}

 cap:smoke-detection - detect smoke

cap:smoke-detection - detect smoke

This capability is used to mark sensors that monitor an environment for smoke.

if(thing.matches('cap:smoke-detection')) {
 console.log('Detected smoke:', await thing.smokeDetected());

 thing.on('smoke', () => console.log('Smoke has been detected'));
 thing.on('smokeDetected', () => console.log('Smoke is no longer detected'));
}

API

	
smokeDetected()

	Get if smoke is being detected.

	Returns

	Promise that resolves to a boolean indicating
if smoke is currently being detected.

Example:

// Using async/await
const smokePresent = await thing.smokeDetected();

// Using promise then/catch
thing.smokeDetected()
 .then(smokePresent => ...)
 .catch(...);

Events

	
smokeDetectedChanged

	The current smoke detection status has changed.

thing.on('smokeDetectedChanged', value => console.log('Detection changed to:', value));

	
smoke

	Emitted when smoke has been detected and smokeDetected() changes to true.

thing.on('smoke', () => console.log('Smoke detected'));

	
smokeCleared

	Emitted when smoke is no longer detected and smokeDetected changes to
false.

thing.on('smokeCleared', () => console.log('Smoke no longer detected'));

Protected methods

	
updateSmokeDetected(value[, autoIdleTimeout])

	Update the current smoke detected status.

	Arguments

	
	value (boolean) – The smoke detected status, true if smoke detected otherwise false.

	autoIdleTimeout (duration) – Optional duration to switch back the smoke detection status to false.

Example:

this.updateSmokeDetected(false);

this.updateSmokeDetected(true, '20s');

Implementing capability

Implementors of this capability should call updateSmokeDetected when
smoke is detected. Implementations may choose between using automatic timeouts
for switching smoke detected status back to false or managing the switching
on their own.

const { Sensor, SmokeDetection } = require('abstract-things/sensors');

class Example extends Sensor.with(SmokeDetection) {

 constructor() {
 super();

 this.updateSmokeDetected(true, '1m');
 }

}

 cap:temperature - read temperature

cap:temperature - read temperature

This capability is used to mark sensors that report a temperature.

if(thing.matches('cap:temperature')) {
 const temperature = await thing.temperature();
 console.log('Temperature:', temperature.celsius);
}

API

	
temperature()

	Get the current temperature.

	Returns

	Promise that resolves to the current
temperature.

Example:

console.log('Temperature is:', thing.temperature);

Events

	
temperatureChanged

	The temperature has changed. Payload is the new temperature.

Example:

thing.on('temperatureChanged', temp => console.log('Temp changed to:', temp));

Protected methods

	
updateTemperature(value)

	Update the current temperature. Should be called whenever a change in
temperature was detected.

	Arguments

	
	value – The new temperature. Will be converted to a
temperature, the default conversion uses
degrees Celsius.

Example:

// Defaults to Celsius
this.updateTemperature(20);

// temperature value can be used to use Fahrenheit (or Kelvin)
const { temperature } = require('abstract-things/values');
this.updateTemperature(temperature(45, 'F'));

Implementing capability

Implementors of this capability should call updateTemperature whenever the
temperature changes.

const { Sensor, Temperature } = require('abstract-things/sensors');

class Example extends Sensor.with(Temperature) {

 constructor() {
 super();

 this.updateTemperature(22);
 }

}

 cap:voltage - read voltage of something

cap:voltage - read voltage of something

This capability is used to mark sensors that report the
voltage of something.

if(thing.matches('cap:voltage')) {
 const voltage = await thing.voltage();
 console.log('Voltage:', voltage.volts);
}

API

	
voltage

	Get the current voltage.

	Returns

	Promise that resolves to the current voltage.

Example:

const voltage = await thing.voltage();
console.log('Voltage:', voltage.volts);

Events

	
voltageChanged

	The voltage has changed. Payload is the new voltage as a
voltage.

Example:

thing.on('voltageChanged', v => console.log('Changed to:', v));

Protected methods

	
updateVoltage(value)

	Update the voltage. Should be called whenever a
change is detected.

	Arguments

	
	value – The new voltage. Will be converted to a voltage
with the default unit being volts.

Example:

this.updateVoltage(12);

Implementing capability

Implementors of this capability should call updateRelativeHumidity whenever
the relative humidity changes.

const { Sensor, Voltage } = require('abstract-things/sensors');

class Example extends Sensor.with(Voltage) {

 constructor() {
 super();

 this.updateVoltage(230);
 }

}

 cap:water-detection - detect water

cap:water-detection - detect water

This capability is used to mark sensors that monitor the presence of water,
such as water leak and rain sensors.

if(thing.matches('cap:water-detection')) {
 console.log('Detected water:', await thing.waterDetected());

 thing.on('water', () => console.log('Water has been detected'));
 thing.on('waterDetected', () => console.log('Water is no longer detected'));
}

API

	
waterDetected()

	Get if water is being detected.

	Returns

	Promise that resolves to a boolean indicating
if water is currently being detected.

Example:

// Using async/await
const waterPresent = await thing.waterDetected();

// Using promise then/catch
thing.waterDetected()
 .then(waterPresent => ...)
 .catch(...);

Events

	
waterDetectedChanged

	The current water detection status has changed.

thing.on('waterDetectedChanged', value => console.log('Detection changed to:', value));

	
water

	Emitted when water has been detected and waterDetected() changes to true.

thing.on('water', () => console.log('Water detected'));

	
waterCleared

	Emitted when water is no longer detected and waterDetected changes to
false.

thing.on('waterCleared', () => console.log('Water no longer detected'));

Protected methods

	
updateWaterDetected(value[, autoIdleTimeout])

	Update the current water detected status.

	Arguments

	
	value (boolean) – The water detected status, true if water detected otherwise false.

	autoIdleTimeout (duration) – Optional duration to switch back the water detection status to false.

Example:

this.updateWaterDetected(false);

this.updateWaterDetected(true, '20s');

Implementing capability

Implementors of this capability should call updateWaterDetected when
water is detected. Implementations may choose between using automatic timeouts
for switching water detected status back to false or managing the switching
on their own.

const { Sensor, WaterDetection } = require('abstract-things/sensors');

class Example extends Sensor.with(WaterDetection) {

 constructor() {
 super();

 this.updateWaterDetected(true, '1m');
 }

}

 Climate

Climate

Climate types and capabilities are provided for things that have to do with the
climate of a space, such as air purifiers, humidifiers, fans and thermostats.

Capabilities

	cap:target-humidity - read the target humidity

	cap:adjustable-target-humidity - change the target humidity

	cap:cleaning-state - get if cleaning

	cap:autonomous-cleaning - activate cleaning

	cap:spot-cleaning - support for spot cleaning

Types

	type:air-monitor - Air quality monitor

	type:air-purifier - Air purifiers

	type:humidifier - Humidifiers

	type:dehumidifier - Dehumidifers

	type:vacuum - Vacuum cleaners

 cap:target-humidity - read the target humidity

cap:target-humidity - read the target humidity

The target-humidity capability is used by things such as
humidifers and dehumidifiers that
support stopping when a certain target humidity is reached. Some things may
also support setting the target humidity via
adjustable-target-humidity.

if(thing.matches('cap:target-humidity')) {
 const humidity = await thing.targetHumidity();
 console.log('Target humidity:', humidity);
}

API

	
targetHumidity()

	Get the current target humidity.

	Returns

	Promise that resolves to the current target humidity as a
percentage.

Example:

const target = await thing.targetHumidity();

Events

	
targetHumidityChanged

	The current target humidity has changed. Payload will be the new target
humidity as a percentage.

Example:

thing.on('targetHumidityChanged', th => console.log('Target:', th));

Protected methods

	
updateTargetHumidity(target)

	Update the current target humidity.

	Arguments

	
	target (percentage) – The new target humidity as a percentage.

Example:

this.updateTargetHumidity(40);
this.updateTargetHumidity('55%');

Implementing capability

When implementing this capability the implementor needs to call
updateTargetHumidity whenever a change in target humidity is detected.

const { Thing } = require('abstract-things');
const { TargetHumidity } = require('abstract-things/climate');

class Example extends Thing.with(TargetHumidity) {

}

 cap:adjustable-target-humidity - change the target humidity

cap:adjustable-target-humidity - change the target humidity

The adjustable-target-humidity capability is an extension to
target-humidity that in addition to reporting the
target humidity also supports setting it.

if(thing.matches('cap:changeable-target-humidity')) {
 const humidity = await thing.targetHumidity();
 console.log('Target humidity:', humidity);

 // Set the target humidity
 await thing.targetHumidity(20);
}

API

	
targetHumidity([target])

	Get or set the current target humidity.

	Arguments

	
	target (percentage) – Optional target humidity to set as a
percentage. If specified the thing will
update the target humidity.

	Returns

	Promise that resolves to the current or set target humidity as a
percentage.

Example:

const target = await thing.targetHumidity();

await thing.targetHumidity(55);

	
setTargetHumidity(target)

	Set the target humidity.

	Arguments

	
	target (percentage) – The target humidity as a percentage.

	Returns

	Promise that resolves to the set target humidity.

Example:

await thing.setTargetHumidity(40);

Protected methods

	
changeTargetHumidity(target)

	Abstract. Change the current target humidity.

	Arguments

	
	target (percentage) – The new target humidity as a percentage.

	Returns

	Promise if asynchronous.

Example:

changeTargetHumidity(target) {
 return actuallySetTargetHumidity(target);
}

Implementing capability

When implementing this capability the implementor needs to call
updateTargetHumidity whenever a change in target humidity is detected.
The changeTargetHumidity method must also be implemented.

const { Thing } = require('abstract-things');
const { AdjustableTargetHumidity } = require('abstract-things/climate');

class Example extends Thing.with(AdjustableTargetHumidity) {

 changeTargetHumidity(target) {
 return actuallySetTargetHumidity(target);
 }

}

 cap:cleaning-state - get if cleaning

cap:cleaning-state - get if cleaning

cleaning-state is used when a thing can report if is currently cleaning.
This is commonly used for things that also support
autonomous cleaning. Things implementing This
capability also support error states.

if(thing.matches('cap:cleaning-state')) {
 console.log('Currently cleaning:', await thing.cleaning());
}

API

Events

	
cleaningChanged

	The cleaning state has changed. Payload will be the new state as a
boolean.

Example:

thing.on('cleaningChanged', c => ...);

	
cleaningStarted

	Cleaning has started.

Example:

thing.on('cleaningStarted', () => console.log('Doing some cleaning'));

	
cleaningDone

	Cleaning was completed without any errors.

thing.on('cleaningDone', () => console.log('Cleaning is now done'));

	
cleaningError

	Cleaning has encountered an error.

thing.on('cleaningError', () => console.log('Cleaning encountered an error'));

	
cleaningStopped

	Cleaning has stopped (for any reason).

thing.on('cleaningStopped', () => console.log('No longer doing any cleaning'));

Protected methods

	
updateCleaning(cleaning)

	Update wether the thing is performing cleaning or not.

	Arguments

	
	cleaning (boolean) – Boolean indicating if cleaning is currently
being performed.

Example:

// Currently doing some cleaning
this.updateCleaning(true);

Implementing capability

When implementing this capability take care to call updateCleaning whenever
cleaning is being done and also when cleaning stops. For errors calling
updateError(error) will automatically set cleaning to false.

const { Thing } = require('abstract-things');
const { CleaningState } = require('abstract-things/climate');

class Example extends Thing.with(CleaningState) {

}

 cap:autonomous-cleaning - activate cleaning

cap:autonomous-cleaning - activate cleaning

autonomous-cleaning is an extension to cleaning state
for things that also support autonomously performing cleaning. This is commonly
used for robots such as robot vacuums and robot mops.

if(thing.matches('cap:autonomous-cleaning')) {

 const isCleaning = await thing.cleaning();
 if(! isCleaning) {
 // Request clean if not currently cleaning
 await thing.clean();
 }

}

API

	
clean()

	Start autonomous cleaning.

	Returns

	Promise that resolves to null.

Example:

// Using async/await
await thing.clean();

// Using promise then/catch
thing.clean()
 .then(...)
 .catch(...);

	
stop()

	Stop autonomous cleaning.

	Returns

	Promise that resolves to null.

Example:

// Using async/await
await thing.stop();

// Using promise then/catch
thing.stop()
 .then(...)
 .catch(...);

Protected methods

	
activateCleaning()

	Abstract. Activate autonomous cleaning. Called whenever clean()
is called by the user.

	Returns

	Promise if asynchronous.

Example:

activateCleaning() {
 return activateViaPromise(...)
 .then(() => this.updateCleaning(true));
}

	
deactivateCleaning()

	Abstract. Deactivate autonomous cleaning. Called whenever stop()
is called by the user.

	Returns

	Promise if asynchronous.

Example:

deactivateCleaning() {
 return deactivateViaPromise(...)
 .then(() => this.updateCleaning(false));
}

Implementing capability

When implementing this capability refer to the requirements of
cleaning-state. In addition to that the methods
activateCleaning and deactivateCleaning need to be implemented.

Example:

const { Thing } = require('abstract-things');
const { AutonomousCleaning } = require('abstract-things/climate');

class Example extends Thing.with(AutonomousCleaning) {

 activateCleaning() {
 return ...;
 }

 deactivateCleaning() {
 return ...;
 }

}

 cap:spot-cleaning - support for spot cleaning

cap:spot-cleaning - support for spot cleaning

This capability is commonly used together with
autonomous cleaning to also support cleaning a
specific spot.

if(thing.matches('cap:spot-cleaning')) {
 // Do some cleaning around this spot
 await thing.cleanSpot();
}

API

	
cleanSpot()

	Activate cleaning for the current spot.

	Returns

	Promise that resolves to null.

Example:

// Using async/await
await thing.cleanSpot();

// Using promise then/catch
thing.cleanSpot()
 .then(...)
 .catch(...);

Protected methods

	
activateCleanSpot()

	Abstract. Activate spot cleaning for this thing. Should call
updateCleaning when spot cleaning is activated.

	Returns

	Promise if asynchronous.

Example:

activateCleanSpot() {
 return activateViaPromise(...);
}

Implementing capability

When implementing this capability refer to the requirements of
cleaning-state. In addition to that the method
activateCleanSpot needs to be implemented.

Example:

const { Thing } = require('abstract-things');
const { SpotCleaning } = require('abstract-things/climate');

class Example extends Thing.with(SpotCleaning) {

 activateCleanSpot() {
 return ...;
 }

}

 type:air-monitor - Air quality monitor

type:air-monitor - Air quality monitor

This type is used for things where the primary function is to monitor
air quality. Commonly these things are sensors that report
values such as PM2.5, PM!=,
carbon dioxide or
carbon monoxide.

if(thing.matches('type:air-monitor')) {
 // The thing is an air monitor
}

Implementing type

const { AirMonitor } = require('abstract-things/climate');

class Example extends AirMonitor.with(...) {

}

 type:air-purifier - Air purifiers

type:air-purifier - Air purifiers

Air purifiers are appliances that filter and purify the air. Commonly used
with the switchable-power and
switchable-mode capabilities.

if(thing.matches('type:air-purifier')) {
 // The thing is an air purifier
}

Implementing type

const { AirPurifier } = require('abstract-things/climate');

class Example extends AirPurifier.with(...) {

}

 type:humidifier - Humidifiers

type:humidifier - Humidifiers

Humidifiers are appliances that increase the humidity of the air. Many
humidifers will support switchable-power
so that they can be switched on or off. Some implement
switchable-mode to support different modes,
such as switching between automatic and manual modes.

if(thing.matches('type:humidifier')) {
 // The thing is a humidifier
}

Implementing type

const { Humidifier } = require('abstract-things/climate');

class Example extends Humidifier.with(...) {

}

 type:dehumidifier - Dehumidifers

type:dehumidifier - Dehumidifers

Dehumidifiers are appliances that decrease the humidity of the air. Many
dehumidifers will support switchable-power
so that they can be switched on or off. Some implement
switchable-mode to support different modes,
such as switching between automatic and manual modes.

if(thing.matches('type:dehumidifier')) {
 // The thing is a dehumidifier
}

Implementing type

const { Dehumidifier } = require('abstract-things/climate');

class Example extends Dehumidifier.with(...) {

}

 type:vacuum - Vacuum cleaners

type:vacuum - Vacuum cleaners

Vacuum cleaners are used as a type for both autonomous and non-autonomous
cleaners.

if(thing.matches('type:vacuum')) {
 // The thing is a vacuum
}

Implementing type

const { Vacuum } = require('abstract-things/climate');

class Example extends Vacuum.with(...) {

}

 Electrical

Electrical

Electrical types and capabilities for power plugs, electrical outlets and
sockets and more. The most common type is power-outlet which is
used to represent a single generic outlet/socket. Such a power outlet may be a
child of other types such as the individual outlets in a
power strip or a wall outlet.

Types

	type:power-outlet - Power outlets

	type:power-channel - Power channels

	type:power-strip - Power strips

	type:power-plug - Power plugs

	type:wall-outlet - Wall outlets

	type:power-switch - Power switches

	type:wall-switch - Wall switches

 type:power-outlet - Power outlets

type:power-outlet - Power outlets

Things marked with power-outlet represent a single outlet that can take a
single plug. Outlets can be both stand-alone and children of another thing,
such as a power strip or wall outlet.

The power and
switchable-power capability is commonly used
with outlets to switch the power of the outlet. Outlets can also be
sensors if they report
power load or
power consumption.

if(thing.matches('type:power-outlet')) {
 // This is a power outlet

 if(thing.matches('cap:switchable-power')) {
 // And it also supports power switching
 thing.turnOn()
 .then(...)
 .catch(...);
 }
}

Implementing type

const { PowerOutlet } = require('abstract-things/electrical');

class Example extends PowerOutlet.with(...) {

}

 type:power-channel - Power channels

type:power-channel - Power channels

Things marked with power-channel represent a single channel of power.
Power channels are usually virtual, such as individual power lines in a
power switch.

The power and
switchable-power capability is commonly used
with channels to support switch the power. Channels can also be
sensors if they report
power load or
power consumption.

if(thing.matches('type:power-channel')) {
 // This is a power channel

 if(thing.matches('cap:switchable-power')) {
 // And it also supports power switching
 thing.turnOn()
 .then(...)
 .catch(...);
 }
}

Implementing type

const { PowerChannel } = require('abstract-things/electrical');

class Example extends PowerChannel.with(...) {

}

 type:power-strip - Power strips

type:power-strip - Power strips

Things marked with power-strip represent a power strip with several outlets.
Power strips can expose their individual outlets as children, in which case
they implement the children capability.

if(thing.matches('type:power-strip')) {
 // This is a power strip

 if(thing.matches('cap:children')) {
 // Each outlet in the strip is available as a child
 const firstOutlet = thing.getChild('1'); // depends on the implementation
 }
}

Implementing type

Without any children:

const { PowerStrip } = require('abstract-things/electrical');

class Example extends PowerStrip.with(...) {

}

With outlets as children:

const { Children } = require('abstract-things');
const { PowerStrip, PowerOutlet } = require('abstract-things/electrical');

class Example extends PowerStrip.with(Children, ...) {

 constructor() {
 super();

 this.addChild(new ExampleOutlet(this, 1));
 this.addChild(new ExampleOutlet(this, 2));
 }

}

class ExampleOutlet extends PowerOutlet.with(...) {

 constructor(parent, idx) {
 this.parent = parent;
 this.id = parent.id + ':' + idx;
 }

}

 type:power-plug - Power plugs

type:power-plug - Power plugs

Things marked with power-plug are plugs that can be plugged in to an outlet.
Most plugs are also power outlets in that appliances can be
plugged in to them.

The power and
switchable-power capability is commonly used
with plugs to switch the power of the outlet of the plug. They can also be
sensors if they report
power load or
power consumption.

if(thing.matches('type:power-plug')) {
 // This is a power plug

 if(thing.matches('cap:switchable-power')) {
 // And it also supports power switching
 thing.turnOn()
 .then(...)
 .catch(...);
 }
}

Implementing type

const { PowerPlug, PowerOutlet } = require('abstract-things/electrical');

class Example extends PowerPlug.with(PowerOutlet, ...) {

}

 type:wall-outlet - Wall outlets

type:wall-outlet - Wall outlets

The wall-outlet type is used to mark things that represent a wall mounted
power outlet. Wall outlets like power strips can expose their
individual outlets as children.

if(thing.matches('type:wall-outlet')) {
 // This is a wall outlet

 if(thing.matches('cap:children')) {
 // Each outlet is available as a child
 const firstOutlet = thing.getChild('1'); // depends on the implementation
 }
}

Implementing type

Without any children:

const { WallOutlet } = require('abstract-things/electrical');

class Example extends WallOutlet.with(...) {

}

With outlets as children:

const { Children } = require('abstract-things');
const { WallOutlet, PowerOutlet } = require('abstract-things/electrical');

class Example extends WallOutlet.with(Children, ...) {

 constructor() {
 super();

 this.addChild(new ExampleOutlet(this, 1));
 this.addChild(new ExampleOutlet(this, 2));
 }

}

class ExampleOutlet extends PowerOutlet.with(...) {

 constructor(parent, idx) {
 this.parent = parent;
 this.id = parent.id + ':' + idx;
 }

}

 type:power-switch - Power switches

type:power-switch - Power switches

Things marked with power-switch are switches that control something.
Switches commonly control power outlets,
power channels and lights.

if(thing.matches('type:power-switch')) {
 // This is a power switch
}

Implementing type

const { PowerSwitch } = require('abstract-things/electrical');

class Example extends PowerSwitch.with(...) {

}

 type:wall-switch - Wall switches

type:wall-switch - Wall switches

The wall-switch type is used to mark things that represent a wall mounted
power switch. A wall switch is commonly used to control
lights or power channels.

if(thing.matches('type:wall-switch')) {
 // This is a wall switch

 if(thing.matches('cap:children')) {
 // Lights or power channels available as children
 const firstChild= thing.getChild('1'); // depends on the implementation
 }
}

Implementing type

Without any children:

const { WallSwitch } = require('abstract-things/electrical');

class Example extends WallOutlet.with(...) {

}

With power channels as children:

const { Children } = require('abstract-things');
const { WallSwitch, PowerChannel } = require('abstract-things/electrical');

class Example extends WallSwitch.with(Children, ...) {

 constructor() {
 super();

 this.addChild(new ExampleChild(this, 1));
 this.addChild(new ExampleChild(this, 2));
 }

}

class ExampleChild extends PowerChannel.with(...) {

 constructor(parent, idx) {
 this.parent = parent;
 this.id = parent.id + ':' + idx;
 }

}

 Index

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	
 	'pm2.5'() ('pm2 method)

A

 	
 	
 actions()

 	() (built-in function)

 	activateCharging() (built-in function)

 	activateCleaning() (built-in function)

 	
 	activateCleanSpot() (built-in function)

 	addChild() (built-in function)

 	atmosphericPressure() (built-in function)

 	atmosphericPressureChanged (global variable or constant)

 	audioFeedback() (built-in function), [1]

B

 	
 	batteryLevel() (built-in function)

 	
 	brightness() (built-in function), [1]

 	brightnessChanged (global variable or constant)

C

 	
 	captureState() (built-in function)

 	carbonDioxideDetected() (built-in function)

 	carbonDioxideLevel() (built-in function)

 	carbonDioxideLevelChanged (global variable or constant)

 	carbonMonoxideChanged (global variable or constant)

 	carbonMonoxideDetected() (built-in function)

 	carbonMonoxideLevel() (built-in function)

 	changeBrightness() (built-in function)

 	changeColor() (built-in function)

 	changeMode() (built-in function)

 	changeName() (built-in function)

 	changePower() (built-in function)

 	changeState() (built-in function)

 	changeTargetHumidity() (built-in function)

 	
 	charge() (built-in function)

 	charging() (built-in function)

 	child() (built-in function)

 	children() (built-in function)

 	clean() (built-in function)

 	cleanSpot() (built-in function)

 	co2Level() (built-in function)

 	coLevel() (built-in function)

 	color() (built-in function)

 	colorChanged (global variable or constant)

 	colorTemperatureRange (None attribute)

 	colorTemperatureRangeChanged (global variable or constant)

 	contactDetected() (built-in function)

 	contactDetectedChanged (global variable or constant)

D

 	
 	deactivateCleaning() (built-in function)

 	decreaseBrightness() (built-in function)

 	
 	destroy() (built-in function)

 	destroyCallback() (built-in function)

E

 	
 	emitAction() (built-in function)

 	
 	emitEvent() (built-in function)

 	error() (built-in function)

F

 	
 	findChild() (built-in function)

G

 	
 	getState() (built-in function)

I

 	
 	id (None attribute)

 	illuminance() (built-in function)

 	illuminanceChanged (global variable or constant)

 	increaseBrightness() (built-in function)

 	
 	init() (built-in function)

 	initCallback() (built-in function)

 	isClosed() (built-in function)

 	isOpen() (built-in function)

M

 	
 	matches() (built-in function)

 	maxChangeTime (None attribute)

 	metadata (None attribute)

 	metadata.addCapabilities() (metadata method)

 	
 	metadata.addTypes() (metadata method)

 	metadata.removeCapabilities() (metadata method)

 	mode() (built-in function), [1]

 	modes() (built-in function)

 	motionDetected() (built-in function)

O

 	
 	off() (built-in function)

 	
 	on() (built-in function)

 	opened (global variable or constant)

P

 	
 	pm10() (built-in function)

 	pm10Changed (global variable or constant)

 	pm2.5Changed (global variable or constant)

 	pm2_5() (built-in function)

 	
 	power() (built-in function), [1]

 	powerConsumed() (built-in function)

 	powerConsumedChanged (global variable or constant)

 	powerLoad() (built-in function)

 	powerLoadChanged (global variable or constant)

R

 	
 	relativeHumidity() (built-in function)

 	relativeHumidityChanged (global variable or constant)

 	
 	removeChild() (built-in function)

 	removeState() (built-in function)

 	restorableState (None attribute)

S

 	
 	setAudioFeedback() (built-in function)

 	setBrightness() (built-in function)

 	setLightState() (built-in function)

 	setName() (built-in function)

 	setPower() (built-in function)

 	setState() (built-in function)

 	setTargetHumidity() (built-in function)

 	
 	smokeDetected() (built-in function)

 	state() (built-in function)

 	stateChanged (global variable or constant)

 	static get capabilities() (built-in function)

 	static get capability() (built-in function)

 	static get type() (built-in function)

 	static get types() (built-in function)

 	stop() (built-in function)

T

 	
 	targetHumidity() (built-in function), [1]

 	temperature() (built-in function)

 	temperatureChanged (global variable or constant)

 	
 	toggleAudioFeedback() (built-in function)

 	togglePower() (built-in function)

 	turnOff() (built-in function)

 	turnOn() (built-in function)

U

 	
 	updateActions() (built-in function)

 	updateAtmosphericPressure() (built-in function)

 	updateAudioFeedback() (built-in function)

 	updateBatteryLevel() (built-in function)

 	updateBrightness() (built-in function)

 	updateCarbonDioxideDetected() (built-in function)

 	updateCarbonDioxideLevel() (built-in function)

 	updateCarbonMonoxideDetected() (built-in function)

 	updateCarbonMonoxideLevel() (built-in function)

 	updateCharging() (built-in function)

 	updateCleaning() (built-in function)

 	updateColor() (built-in function)

 	updateColorTemperatureRange() (built-in function)

 	updateContactDetected() (built-in function)

 	updateError() (built-in function)

 	updateIlluminance() (built-in function)

 	
 	updateMaxChangeTime() (built-in function)

 	updateMode() (built-in function)

 	updateModes() (built-in function)

 	updateMotionDetected() (built-in function)

 	updatePM10() (built-in function)

 	updatePM2_5() (built-in function)

 	updatePower() (built-in function)

 	updatePowerConsumed() (built-in function)

 	updatePowerLoad() (built-in function)

 	updateRelativeHumidity() (built-in function)

 	updateSmokeDetected() (built-in function)

 	updateState() (built-in function)

 	updateTargetHumidity() (built-in function)

 	updateTemperature() (built-in function)

 	updateVoltage() (built-in function)

 	updateWaterDetected() (built-in function)

V

 	
 	voltage (None attribute)

 	
 	voltageChanged (global variable or constant)

W

 	
 	waterDetected() (built-in function)

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 abstract-things

 		
 Using things

 		
 Thing API

 		
 Remote API

 		
 Building things

 		
 Naming of identifiers, types and capabilities

 		
 Namespaces

 		
 Identifiers

 		
 Types

 		
 Capabilities

 		
 Metadata

 		
 Identifiers and name

 		
 Static getters for types and capabilities

 		
 Dynamically adding

 		
 Mixins and with

 		
 Defining a mixin

 		
 Internal capabilities

 		
 Initalization and destruction

 		
 Protected methods

 		
 Handling events

 		
 API

 		
 Common patterns

 		
 Values

 		
 Angle

 		
 Units

 		
 String conversion

 		
 Area

 		
 Units

 		
 String conversion

 		
 Array

 		
 Boolean

 		
 String conversion

 		
 Buffer

 		
 Code

 		
 Color

 		
 RGB

 		
 Temperatures

 		
 Duration

 		
 Units

 		
 String conversion

 		
 Energy

 		
 Units

 		
 String conversion

 		
 Illuminance

 		
 Units

 		
 String conversion

 		
 Length

 		
 Units

 		
 String conversion

 		
 Mass

 		
 Units

 		
 String conversion

 		
 Mixed

 		
 Number

 		
 String conversion

 		
 SI-prefixes

 		
 Object

 		
 Percentage

 		
 String conversion

 		
 Power

 		
 Units

 		
 String conversion

 		
 Pressure

 		
 Units

 		
 String conversion

 		
 Sound Pressure Level

 		
 Units

 		
 String conversion

 		
 Speed

 		
 Units

 		
 String conversion

 		
 String

 		
 Temperature

 		
 Units

 		
 String conversion

 		
 Voltage

 		
 Units

 		
 String conversion

 		
 Volume

 		
 Units

 		
 String conversion

 		
 Common capabilities

 		
 cap:children - access child things

 		
 API

 		
 Partial identifiers

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:state - state tracking

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:restorable-state - capture and restore state

 		
 API

 		
 Protected methods

 		
 Implementing capability

 		
 cap:nameable - renameable things

 		
 API

 		
 Protected methods

 		
 Implementing capability

 		
 cap:power - monitor power state

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:switchable-power - switch power state

 		
 API

 		
 Protected methods

 		
 Implementing capability

 		
 cap:mode - monitor mode

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:switchable-mode - switch mode

 		
 API

 		
 Protected methods

 		
 Implementing capability

 		
 cap:error-state - error reporting

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:battery-level - monitor battery level

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:charging-state - monitor if charging

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:autonomous-charging - request charging

 		
 API

 		
 Protected methods

 		
 Implementing capability

 		
 cap:audio-feedback - if thing emits audio feedback

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:switchable-audio-feedback - enable or disable audio feedback

 		
 API

 		
 Implementing capability

 		
 Controllers

 		
 cap:actions - emit events on actions

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 type:controller - Generic controller

 		
 Implementing type

 		
 type:button - Single button

 		
 Implementing type

 		
 type:remote-control - Remote controls

 		
 Implementing type

 		
 type:wall-controller - Controllers mounted on a wall

 		
 Implementing type

 		
 Lights

 		
 Implementing lights

 		
 Protected methods

 		
 Power switching

 		
 type:light-bulb - Light bulbs

 		
 Implementing capability

 		
 type:light-strip - Light strips

 		
 Implementing capability

 		
 cap:fading - support for fading changes

 		
 API

 		
 Protected methods

 		
 Implementing capability

 		
 cap:brightness - read brightness

 		
 API

 		
 Events

 		
 Protected functions

 		
 Implementing capability

 		
 cap:dimmable - change brightness

 		
 API

 		
 Protected methods

 		
 Implementing capability

 		
 cap:colorable - coloring of lights

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:color:temperature - light supports temperature

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:color:full - light supports full range of color

 		
 Implementing capability

 		
 Sensors

 		
 cap:atmospheric-pressure - read atmospheric pressure

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:carbon-dioxide-detection - detect abnormal CO2 levels

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:carbon-dioxide-level - read carbon dioxide level

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:carbon-monoxide-detection - detect abnormal CO levels

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:carbon-monoxide-leve - read carbon monoxide level

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:contact-detection - contact sensing

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:illuminance - read illuminance

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:motion-detection - motion sensing

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:pm2.5 - read PM2.5 density (air quality)

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:pm10 - read PM10 density (air quality)

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:power-consumed - read power consumed

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:power-load - read the current power load

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:relative-humidity - read humidity of air

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:smoke-detection - detect smoke

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:temperature - read temperature

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:voltage - read voltage of something

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:water-detection - detect water

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 Climate

 		
 cap:target-humidity - read the target humidity

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:adjustable-target-humidity - change the target humidity

 		
 API

 		
 Protected methods

 		
 Implementing capability

 		
 cap:cleaning-state - get if cleaning

 		
 API

 		
 Events

 		
 Protected methods

 		
 Implementing capability

 		
 cap:autonomous-cleaning - activate cleaning

 		
 API

 		
 Protected methods

 		
 Implementing capability

 		
 cap:spot-cleaning - support for spot cleaning

 		
 API

 		
 Protected methods

 		
 Implementing capability

 		
 type:air-monitor - Air quality monitor

 		
 Implementing type

 		
 type:air-purifier - Air purifiers

 		
 Implementing type

 		
 type:humidifier - Humidifiers

 		
 Implementing type

 		
 type:dehumidifier - Dehumidifers

 		
 Implementing type

 		
 type:vacuum - Vacuum cleaners

 		
 Implementing type

 		
 Electrical

 		
 type:power-outlet - Power outlets

 		
 Implementing type

 		
 type:power-channel - Power channels

 		
 Implementing type

 		
 type:power-strip - Power strips

 		
 Implementing type

 		
 type:power-plug - Power plugs

 		
 Implementing type

