

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Numphp

[image: _images/numphp.svg]Build Status [https://travis-ci.org/apollonin/numphp]
[image: _images/stable.svg]Latest Stable Version [https://packagist.org/packages/apollonin/numphp]
[image: _images/downloads.svg]Total Downloads [https://packagist.org/packages/apollonin/numphp]
[image: _images/license.svg]License [https://packagist.org/packages/apollonin/numphp]
[image: _images/badge.svg]codecov [https://codecov.io/gh/apollonin/numphp]
[image: _images/maintainability.svg]Maintainability [https://codeclimate.com/github/apollonin/numphp/maintainability]
[image: _images/test_coverage.svg]Test Coverage [https://codeclimate.com/github/apollonin/numphp/test_coverage]

Numphp is a library for number manipulations. If you have an array of numbers, numphp gives you an ability to perform a wide range of useful operations.

Contributions are highly appreciated.

Installation

With composer

composer require apollonin/numphp

Available features

Arrays

	get item by index

	get items by array of indexes

	get items by condition

	eq, gt, gte, lt, lte, neq - equals, greater than, and so on

	get items by complex conditions

	b_and, b_or - bitwise AND and OR

	set items values according to conditions, indexes or slices

	apply math operations to whole array

	mul, div, add, sub, pow, mod

	get slice of array

	get statistical values from array

	count, max, mean, median, min, sum

	describe - special method that displays all above values

	Get dimensional data

	shape

	dimension

	Concatenate arrays

np_array also has classical array behaviour. So you are able to iterate through it as usual.

Matrix

Matrix is a special case of arrays. At the moment, we only support 2d matrices. Full support for n-dimensional matrices is on the way.

You can perform all the same operations and comparisons as with arrays. Refer to Matrix section below in usage examples.

Dimensional Manipulation

You are able to change dimensions for existed array or matrix. Use flatten or reshape methods.

Random Module

Numphp also provides convenient ways to generate new np_arrays and populate them with random values. Available methods are

	rand

	randint

If size parameter is given, returns np_array with appropriate elements. Otherwise, it returns single random value.

Generators

For quick stub array creation you may use these convenient predefined methods

	ones - creates array full of 1

	zeros - creates array full of 0

	full- creates array full of provided fill_value

	arange - creates evenly spaced values within a given interval.

	fib - creates Fibonacci numbers

	formula - returns sequence of numbers, based on provided formula

Usage Examples

Indexing

create new array

$list = new np_array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);

Get items by their indexes

$result = $list[[2,3]];

// result
[2, 3]

To get item as single value - pass index as single value as well

$result = $list[1];

// result
1

Get items by condition

$result = $list[$list->gt(5)];

// result
[6, 7, 8, 9]

You may also access index by string representations of comparison.

// gives the same result as above
$result = $list[$list['> 5']];

Important note about conditional indexing: conditional operator returns masking array:

 $mask = $list->gt(5);

 // mask
 [false, false, false, false, false, false, true, true, true, true]

 // and then
 $result = $list[$mask];

 // result
 [6, 7, 8, 9]

You also can pass another array as an argument. In this case the comparison will be applied for each element respectively.

$result = $list[$list->gt([5, 6, 7, 8, 9, 3, 4, 5, 6, 7])];

// result
[6, 7, 8, 9]

Get items by conditions

b_and - “bitwise” and

$resuilt = $list[Bitwise::b_and($list->gte(5), $list->lt(8))];

// result
[5, 6, 7]

Array-like behaviour

You may also iterate your np_array object as usual

foreach ($list as $item) {
 echo $item . " ";
}

// output
0 1 2 3 4 5 6 7 8 9

Slicing

You may get slices of your np_array in a very convenient way. Just pass string formatted like start:[stop][:step] as index and you’ll get result.

$result = $list['1:5'];

//result
[1, 2, 3, 4]

$result = $list['1:5:2'];

//result
[1, 3]

You can even skip stop and step values, which means: get all items from start to the end of array.

$result = $list['1:'];

//result
[1, 2, 3, 4, 5, 6, 7, 8, 9]

You may even skip start value; it will be considered as 0 in this case

$result = $list[':'];

//result
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Negative start or stop means indexes count from the end of array

$result = $list['-7:6'];

//result
[3, 4, 5]

Set item values

Set items by indexes

$result = clone($list);
$result[[2,3]] = 999;

// result
[0, 1, 999, 999, 4, 5, 6, 7, 8, 9]

Set items by conditions

$result = clone($list);
$result[$result->gte(5)] = 999;

// result
[0, 1, 2, 3, 4, 999, 999, 999, 999, 999]

Set items by slice

$result = clone($list);
$result['1:3'] = 999;

// result
[0, 999, 999, 3, 4, 5, 6, 7, 8, 9]

Adding new items

Of course, you may add new items as usual

$result = clone($list);
$result[] = 999;

// result
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 999]

Math operations

You are able to apply certain math operations to the whole array. It will apply to each element.

$result = $list->add(100);

// result
[100, 101, 102, 103, 104, 105, 106, 107, 108, 109]

You may also perform math operation under two np_arrays

$result = $list->add(new np_array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))

//result
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Or event np_array and normal array!

$result = $list->add([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);

//result
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Random module

Create array with random floats

use numphp\Random\Random;

$result = Random::rand(5)

// result
[0.64488127438579, 0.21702189986455, 0.96931800524207, 0.78197341448719, 0.89214772632911]

Array with random integers

use numphp\Random\Random;

$result = Random::randint(5, 15, 10);

// result
[13, 9, 12, 14, 6, 15, 8, 9, 5, 13]

Generators module

create array full of zeros, ones or fill_value

use numphp\Generator\Generator;

$result = Generator::zeros(5);

//result
[0, 0, 0, 0, 0]

$result = Generator::ones(5);

//result
[1, 1, 1, 1, 1]

$result = Generator::full(5, 999);

//result
[999, 999, 999, 999, 999]

Create array within a range and given interval

use numphp\Generator\Generator;

$result = Generator::arange(1, 15, 2);

//result
[1, 3, 5, 7, 9, 11, 13]

Generate N Fibonacci [https://en.wikipedia.org/wiki/Fibonacci_number] numbers

use numphp\Generator\Generator;

$result = Generator::fib(6);

//result
[1, 1, 2, 3, 5, 8]

Generate numbers according to formula

Provide callable [http://php.net/manual/en/language.types.callable.php] as a first argument. It must return value, that will be used in sequence.

use numphp\Generator\Generator;

$result = Generator::formula(function($n){return 2*$n+1;}, 1, 5);

//result
[3, 5, 7, 9]

Generate matrix with given diagonal

$matrix = Generator::diagonal([5, 3, 1]);

// matrix
[[5, 0, 0],
[0, 3, 0],
[0, 0, 1]]

Matrix operations

Generally the syntax and features are the same as for arrays

Creation

$matrix = new np_array([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]);

// matrix
[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]]

Indexing

Indexing is done in respect to X-axis (rows)

$result = $matrix[0];

//result
[0, 1, 2, 3]

Slicing

$result = $matrix['1:3'];

//result
[[4, 5, 6, 7],
 [8, 9, 10, 11]]

Comparisons

$result = $matrix[$matrix->gt(5)];

//result
[6, 7, 8, 9, 10, 11]

Keep in mind ‘masking’ feature

$mask = $matrix->gt(5);

//mask
[[false, false, false, false],
[false, false, true, true],
[true, true, true, true]]

Changing values

$matrix[$matrix->gte(5)] = 999;

//matrix
[[0, 1, 2, 3],
 [4, 999, 999, 999],
 [999, 999, 999, 999]]

Math operations

$result = $matrix->mul(5);

//result
[[0, 5, 10, 15],
 [20, 25, 30, 35],
 [40, 45, 50, 55]]

Get shape of matrix

$shape = $matrix->shape;

//shape: [rows, cols]
[3, 4]

And if you just need count of dimensions

$dimensions = $matrix->dimensions;

//dimensions
2

Diagonal

$result = $matrix->diagonal();

//result
[0, 5, 10]

or you can set offset for diagonal

$result = $matrix->diagonal(2);

//result
[2, 7]

Changing dimensions

Flatten matrix

You can get 1-D array from matrix.

$result = $matrix->flatten();

//result
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

Reshaping

You also can change current shape of matrix to any desired.

$result = $matrix->reshape([6, 2]);

//result
[[0, 1],
 [2, 3],
 [4, 5],
 [6, 7],
 [8, 9],
 [10, 11]]

Concatenation

concatenate arrays

You can concatenate two or more arrays into one. Logic is similar to array_merge [http://php.net/manual/en/function.array-merge.php] native php method

$l1 = Generator::arange(1, 5);
$l2 = Generator::arange(5, 8);
$l3 = Generator::arange(8, 10);

$result = np::concatenate($l1, $l2, $l3)

//result
[1, 2, 3, 4, 5, 6, 7, 8, 9]

concatenate matrixes

The same logic can be applied to matrixes

$m2 = Generator::ones([1, 4]);
$result = np::concatenate($matrix, $m2)

//result
[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [1, 1, 1, 1]]

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up.png

_static/up-pressed.png

