

Welcome to Team 5940 Robotics Documentation

Welcome

	Welcome to Team 5940’s Documentation!

Falconlibrary

	FalconLibrary

	FalconDashboard

	FalconLibrary Units and Math

	FalconLibrary’s Command-based Implememntation

	Pathing with FalconLibrary

	Example path following drivebases

Welcome to Team 5940’s Documentation!

Here lives documentation of Team 5940’s code, including team-specific
items. Please refer to the frc-docs companion documentation [https://frc-docs.readthedocs.io/en/latest/]
for WPILibJ and WPILibC resoureces.

This repository also includes documentation of Team 5190 Green Hope
Robotics’ FalconLibrary and FalconDashboard as an unnoficial
resourece.

FalconLibrary

Overview

Falcon Library is the backend library that is used on all FRC Team 5190
robots. This library was written in the Kotlin JVM Language. Some
features of this library include:

	Wrapped WPILib Commands and Subsystems with Kotlin Coroutines
asynchronous optimzation.

	High level mathematics for path generation, tracking, custom typesafe
units of measure, etc.

	Two-dimensional parametric and functional splines.

	Arc length of parametric quintic hermite splines evaluated using
recursive arc subdivision (from Team 254).

	Trajectory generation that respects constraints (i.e. centripetal
acceleration, motor voltage).

	Custom trajectory followers

	Ramsete

	Adaptive Pure Pursuit

	Feedforward

	Typesafe units of measure

	Quick and easy conversions between all length, velocity,
acceleration, electrical units.

	Support for Talon SRX native unit length and rotation models.

	AHRS sensor wrapper for Pigeon IMU and NavX.

	Tank Drive Subsystem abstraction with built-in odometry and command
to follow trajectories.

	Talon SRX wrapper that utilizes Kotlin properties to set
configurations.

	Custom robot base with fully implemented state machine and coroutine
support.

	Other WPILib wrappers for NetworkTables, etc.

Java Interoperability

FalconLibrary is written in Kotlin, a new programming language based
on the Java Virtual Machine. Kotlin code is fully interoperable with
Java code. One caviat: static functions and members will be split
into their own class. For instance, to construct a Java
Length, one would do:

var x = LengthKt.getFeet(10);

Contributing

This library is open source and we would love to have you contribute
code to this repository. Please make sure that before submitting a pull
request, your code is formatted according to ktlint (already in the
project). The Gradle build will fail if all code is not formatted
correctly.

To format code automatically, run ./gradlew spotlessApply. Please
build the project locally using ./gradlew build to make sure
everything works before submitting a pull request.

When adding new features, it is encouraged that these features be
game-agnostic. This library is intended to be used for robots that play
any game. Also make sure to include unit-tests for any new features.

FalconDashboard

Falcon Dashboard is a Kotlin-based utility that can be used to generate
trajectories and visualize the robot’s position on the field live. This
utility uses FalconLibrary as the backend trajectory generation code,
and generates code that can be pasted into your robot code. The source
code is publicly available at https://github.com/5190GreenHopeRobotics/FalconDashboard

[image: ../../../_images/dash1.png]
[image: ../../../_images/dash2.png]

Running FalconDashboard

Clone or download the repository, and execute this command from within
the project root directory:

./gradlew run

Generating code

[image: ../../../_images/dash3.png]
To generate code, just click generate and paste the code into
a command or command group. Specific implementation will vary
user to user. See Following Trajectories (TODO Link) for more
information. One example might be:

Java

var traject = Trajectories.generateTrajectory(
 Arrays.asList(
 new Pose2d(LengthKt.getFeet(5.634),
 LengthKt.getFeet(17.719),
 Rotation2dKt.getDegree(0)),
 new Pose2d(LengthKt.getFeet(18.36),
 LengthKt.getFeet(19.143),
 Rotation2dKt.getDegree(0)),
 new Pose2d(LengthKt.getFeet(20.822),
 LengthKt.getFeet(25.301),
 Rotation2dKt.getDegree(153.33))
),
 Arrays.asList(new CentripetalAccelerationConstraint(
 AccelerationKt.getAcceleration(LengthKt.getFeet(8.0)))),
 VelocityKt.getVelocity(LengthKt.getFeet(0.0)),
 VelocityKt.getVelocity(LengthKt.getFeet(0.0)),
 VelocityKt.getVelocity(LengthKt.getFeet(7.0)),
 AccelerationKt.getAcceleration(LengthKt.getFeet(8.0)),
 false
 true
);

addSequential(new FollowPathCommand(traject, true, m_DriveBase);

Kotlin

// coming soon, coz i don't know Kotlin at all

FalconLibrary Units and Math

Summery

FalconLibrary includes all common SI units and derived units as typesafe
objects. This includes base units such as Length, Time and Voltage, as
well as derived units such as Velocity and Acceleration.

All typesafe units include common mathematical operators such as unary
plus, unary minus, equivalency checks, multiplication and division.

Note

To use these functions in Java, one must call Rotation2dKt.getDegree(10).div(TimeUnitsKt.getSecond(10))
rather than Rotation2dKt.getDegree(10) / TimeUnitsKt.getSecond(10).
This does not apply to Kotlin users.

Note

These functions do
not modify the class on which they are called, but instead return a new
instance of it. So if I construct a new Length of 5 inches and call
.plus(x) on it, that original length is still 5 inches.

All the base units contain the basic SI increments, such as milli-,
micro-, nano, as well as kilo- or even yotta- and exa-.
Additionally, units include (in general) the imperial equivalent,
such as inches and feet or miles for Length or pounds for Mass.
See your autocomplete for a full list of types.

Time

Time represents a time, and implements SIUnit. Use this to represent a
passing time, a duration, or to construct derived units such as Velocity
and Acceleration.’

Java

Time aTime = TimeUnitsKt.getSecond(10);

Kotlin

val aTime = 10.second

val anotherTime = 10.millisecond

Length

A Length represents a displacement in 1D space, and can be either positive
or negative. The function aLength.getValue() will return the value
in meters, as it is the base unit of Length in the SI system.

Java

// creating a Length
Length aLength = LengthKt.getFeet(10);
Length anotherLen = LengthKt.getMeter(3);

// getting a Length
double aLengthInInches = aLength.getInch();
double miles = anotherLen.getMile();

Kotlin

val aLen = 10.feet
val anotherLen = 3.meter

val inches = aLen.inch
val miles = anotherLen.mile

Rotation2d

A Rotation2d represents a rotation in 2d space. Think of it like an angle
on a unit circle - it can represent the angle of the triangle’s hypotenuse,
and can be converted into a Translation2d with X and Y components
correlated to the angle’s sine and cosine components.

Java

Rotation2d rotation = Rotation2dkt.getDegree(45);

// returns true
var isParallel = rotation.isParallel(rotation);

Rotation2d aMultiple = rotation.times(4);

Rotation2d mMinus = rotation.minus(Rotation2dKt.getDegree(30);

Rotation2d mPlus = rotation.plus(Rotation2dKt.getDegree(-10);

Kotlin

val rotation = 45.degree

val isParallel = rotation.isParallel(rotation)

val aMultiple = rotation.times(4)

val mMinus = rotation.minus(30.degree)

val mPlus = rotation.plus((-10).radian)

NativeUnit

NativeUnit, an SIValue, are often used on motor controllers with feedback
sensors,
such as TalonSRXes with Quadrature encoders. These encoders output a
fixed number of pulses for every rotation of the shaft they are connected
to, and a NativeUnit represents these pulses distinct from information
encoding actual, real-life position measurements such as distance or
angles. Because NativeUnit is a SIValue, it inherits the same common
operators as Length and Rotation2d.
Conversion between NativeUnits and physical units are done
using the Native Unit Model abstract class. Included in FalconLibrary
are NativeUnitLengthModel and NativeUnitRotationModel
models, which covers both linear applications (for example, an elevator
or slide) and angular applications (such as an arm). These models
include methods to convert between native and physical unit positions,
velocities, accelerations, and error, among other things.

Warning

The TalonSRX encodes velocity as ticks per 100ms, however
other motor controllers such as the Spark Max encode rpm
by default. Furthermore, most motor controllers will let
you multiply their measured ticks by an arbitrary constant,
so even if the Spark MAX says RPM, you may have it configured
for RPS. Keep this in mind when using Length and Rotation
models!

Java

NativeUnit someUnits = NativeUnitKt.getNativeUnits(10);

Kotlin

val nativeUnits = 10.nativeUnits

Velocity

Velocity, a derived unit, is often used to represent a linear or
angular speed. However it is possible to make a Velocity of any
type that impalements SIValue. The type of Velocity represented can be
parameterized by any class that implements SIValue - for instance, a
Velocity<Length>, or Velocity<Rotation2d>, or even
Velocity<NativeUnit>.

Java

// a linear velocity
Velocity<Length> tenFeetPerSec = LengthKt.getFeet(10).div(TimeUnitsKt.getSecond(1));

// an angular velocity
Velocity<Rotation2d> tenDegPerSec = Rotation2dKt.getDegree(10).div(TimeUnitsKt.getSecond(1));

double radPerSec = tenDegPerSec.getType$FalconLibrary().getRadian();

Velocity<NativeUnit> ticksPerSec = NativeUnitKt.getNativeUnits(10).div(TimeUnitsKt.getSecond(1));

Kotlin

val tenFeetPerSec = 10.feet / 1.second

val tenDegPerSec = 10.degree / 1.second

val ticksPerSec = 10.nativeUnits / 1.second

// TODO make this actually work in kotlin
val inRadiansPerSec = aVel.getType$FalconLibrary().getRadian();

Acceleration

Acceleration, a derived unit of Velocity, is used to represent either
a linear or angular acceleration. Similar to Length, the type can be
parameterized by any class that implements SIValue. Similar to Length,
Acceleration must be parameterized by a class with inherits SIValue.

Java

Velocity<Length> tenFeetPerSecSquared = LengthKt.getFeet(10).div(TimeUnitsKt.getSecond(1)).div(TimeUnitsKt.getSecond(1));

Velocity<Rotation2d> nyooooomAccel = Rotation2dKt.getDegree(10000).div(TimeUnitsKt.getSecond(1)).div(TimeUnitsKt.getSecond(1));

Velocity<NativeUnit> fastNativeUnitNyoom = NativeUnitKt.getNativeUnits(10000).div(TimeUnitsKt.getSecond(1)).div(TimeUnitsKt.getSecond(1));

Kotlin

val tenFeetPerSecSquared = 10.feet / 1.second / 1.second

val angularAccel = 10000.degree / 1.second / 1.second

val fastNativeUnitNyoom = 1000000.nativeUnits / 1.second / 1.second

Translation2d

A Translation2d is similar to a 2d vector. It can be constructed
either with a typesafe magnitude and direction, or from x
and y components, or from the displacement between two other
Translation2ds. Translation2d is also special because it implements
VaryInterpolatable, which means that you can linearly interpolate
between two Translation2ds. This is very useful for path following.

Java

// This is assumed to be meters
Translation2d tran = new Translation2d(
 4, 5
);

// This is a typesafe translation
tran = new Translation2d(
 LengthKt.getInch(4),
 LengthKt.getFeet(10)
);

// make a Translation2d out of essentially a vector
tran = new Translation2d(
 LengthKt.getFeet(20),
 Rotation2dKt.getDegree(21)
);

// This will have a "norm" of 1 meter
Translation2d anotherTran = Translation2dKt.fromRotation(Rotation2dkt.getDegree(45));

// return the point interpolated half way between these two points
var interpolated = tran.interpolate(anotherTran, 0.5);

// get the Length of the hypotenuse of this
var hypotenuseLength = tran.norm();

Kotlin

// This is assumed to be meters
val tran = Translation2d(4, 5);
val tran = Translation2d(4.feet, 10.meter)

// make a Translation2d out of essentially a vector
val tran = Translation2d(5.feet, 21.degree)

// This will have a "norm" of 1 meter
val anotherTran = Translation2d.fromRotation(45.degree)

// return the point interpolated half way between these two points
val interpolated = tran.interpolate(anotherTran, 0.5);

// get the Length of the hypotenuse of this
val hypotenuseLength = tran.norm()

Pose2d

Pose2d is a composition of Translation2d and Rotation2d. It represents
a point in 2 dimensional space with an associated heading, for example,

Java

var pose = new Pose2d(LengthKt.getInch(5), LengthKt.getInch(5), Rotation2dKt.getDegree(45);

Kotlin

val pose = Pose2d(Translation2d(5.feet, 2.inch), 45.degree)

This unit is also really useful for path following, and is used to
represent a robot’s 2d position on the field and a heading. The type
also includes methods such as .mirror(), which mirrors the Pose2d
about the middle of the field (left/right, relative to the alliance wall),
and the usual plus/minus functions, and interpolation methods. For
more advanced functions such as inFrameOfReferenceOf() or
twist(), teams are encourage to Read the github source [https://github.com/5190GreenHopeRobotics/FalconLibrary/blob/32a9657467ad7866b9cca710cd937748f3c3aefb/src/main/kotlin/org/ghrobotics/lib/mathematics/twodim/geometry/Pose2d.kt].

Twist2d

Coming soon, i’m confused.

Twist2d holds a dx, dy and dtheta component to represent a robot “twist.”
More docs coming soon.

Pose2dWithCurvature

Pose2dWithCurvature, similar to Twist2d, holds Pose2d
and curvature components. Curvature is defined as one over
the radius of a circle, and curvature can be positive or
negative depending on the direction that the pose twists -
left or right.

Other Units

Other SI Units of FalconLibrary not men sioned here include
Mass, Ohms, Volts and Amps.

FalconLibrary’s Command-based Implememntation

FalconLibrary implements a Command Based framework, similar
to WPILib. This command based implementation is based upon
wrapping WPILib’s Command based Commands and Subsystems, but
is scheduled based upon Kotlin Coroutines and includes
syntactic sugar for command group building. This example
from Team 5190’s 2018 offseason code demonstrates building
CommandGroups with both parallel and sequential commands.

// Place third cube in scale
+parallel { // run all these commands in parallel
 +DriveSubsystem.followTrajectory(cube2ToScale, shouldMirrorPath)
 .withExit(stopScalePathCondition)
 +sequential { // run first the DelayCommand, then move the arm back
 +DelayCommand(cube2ToScale.lastState.t - 2.7.second)
 +SubsystemPreset.BEHIND.command
 }
 +sequential { // wait for the arm, then outtake a cube.
 +ConditionCommand { ArmSubsystem.armPosition > Constants.kArmBehindPosition - Constants.kArmAutoTolerance }
 +IntakeCommand(IntakeSubsystem.Direction.OUT, 0.4).withTimeout(500.millisecond)
 }
}

Note

To use FalconLibrary’s built-in tank-drive drivetrains a team will have to be completely Falcon-command-based, and teams using WPI’s command-based cannot use any FalconCommands or FalconSubsystems.

Pathing with FalconLibrary

Summery

[image: ../../../_images/dash1.png]
To get from point A to B in the fastest way possible, FalconLibrary generates
a spline between the two points. (iirc) Team 254 teh Chezy Pofs were the first
to use splines, back in 2014. FalconLibrary generates splines using user
provided
waypoints, initial and ending velocities, maximum speeds and accelerations, and
additional constraints including velocity limiting regions and
drivetrain models (see the article on these). These trajectories are then
uploaded to the robot, which follows them using a selection of available
followers. To do this, though, the robot needs to know where it is on the
field and update it in real-time using a technique called Odometry, meaning
that your robot needs encoders
and a form of gyroscope such as NavX or Pigeon IMU.

Odometry

Odometry is the process of deriving robot position using
Dead Reckoning [https://en.wikipedia.org/wiki/Dead_reckoning].
Using information about driven distance and heading, a robot can
be “localized” on the field. The process of relocalization is deriving
an absolute robot position by way of known robot pose or a vision target.
FalconLibrary implements for users a build in Tank Drive Odometry
class - all that users need to do is in give it Suppliers for drivetrain
distances and robot heading. Review this for more information on
Functional Interfaces in Java. [https://www.geeksforgeeks.org/functional-interfaces-java/]

Java

/* Create a localization object because lambda expressions are fun */
localization = new TankEncoderLocalization(
 // the gyro needs to be positive counter-clockwise
 () -> Rotation2dKt.getDegree(getGyro(true)),
 // and these need to return a Length
 () -> getLeft().getDistance(),
 () -> getRight().getDistance());

/* set the robot pose to 0,0,0 */
localization.reset(new Pose2d());

// the update() method must be called periodically,
// as fast as possible. 100hz is ideal, but 20 will work.
Notifier localizationNotifier = new Notifier(
 () -> {localization.update();}
);
localizationNotifier.startPeriodic(1d / 100d);

Kotlin

// coming soon, coz i don't know Kotlin at all

Following paths

Paths should be generated with /docs/unnoficial-libraries/team5190/falcon-dash
(TODO fix that link)
Paths are stored as a TimedTrajectory<Pose2dWithCurvature>,
which can be followed using:

	Feedforward, using no pose feedback

	
	Pure Pursuit, which uses a lookahead point and angle to follow

	a path. This should be phased out for tank drive in favor
of

	RAMSETE, non-linear feedback based on robot pose.

It is recommended that teams make their drivetrains implement
DifferentialTrackerDriveBase and convert their motors
to FalconMotor<Length>, or it’s subclasses, such as
FalconSRX<Length>.

The DifferentialTrackerDriveBase

DifferentialTrackerDriveBase is an interface for teams to quickly
make their drivetrains integrate with FalconLibrary path following. The
interface requires you to have characterized and modeled your drivetrain,
to have drive motors which subclass FalconMotor, and have implemented
a form of localization. The method contains and inherits methods for
utilizing the feedforward models of your drivetrain to estimate
the voltage required for a (velocity, acceleration) command and setting
motor output to a PID setpoint + feedforward voltage. See (TODO LINK)
characterizing your drivetrain for information on the DifferentialDrive
class. A bare-bones example of a DifferentialTrackerDriveBase can be
found (TODO LINK) HERE.

An example path following command

Java

public class TrajectoryTrackerCommand extends SendableCommandBase {
 private TrajectoryTracker trajectoryTracker;
 private Supplier<TimedTrajectory<Pose2dWithCurvature>> trajectorySource;
 private DriveTrain driveBase;
 private boolean reset;
 private TrajectoryTrackerOutput output;
 Length mDesiredLeft;
 Length mDesiredRight;
 double mCurrentLeft;
 double mCurrentRight;

 Notifier mUpdateNotifier;

 public TrajectoryTrackerCommand(DriveTrain driveBase, Supplier<TimedTrajectory<Pose2dWithCurvature>> trajectorySource) {
 this(driveBase, trajectorySource, false);
 }

 public TrajectoryTrackerCommand(DriveTrain driveBase, Supplier<TimedTrajectory<Pose2dWithCurvature>> trajectorySource, boolean reset) {
 this(driveBase, Robot.drivetrain.getTrajectoryTracker(), trajectorySource, reset);
 }

 public TrajectoryTrackerCommand(DriveTrain driveBase, TrajectoryTracker trajectoryTracker, Supplier<TimedTrajectory<Pose2dWithCurvature>> trajectorySource, boolean reset) {
 addRequirements(driveBase);
 this.driveBase = driveBase;
 this.trajectoryTracker = trajectoryTracker;
 this.trajectorySource = trajectorySource;
 this.reset = reset;
 }

 @Override
 public void initialize() {
 LiveDashboard.INSTANCE.setFollowingPath(false);

 if (trajectorySource == null) {
 Logger.log("Sadly the trajectories are not generated. the person responsible for the trajectories has been sacked.");
 Trajectories.generateAllTrajectories();
 }

 trajectoryTracker.reset(this.trajectorySource.get());

 if (reset == true) {
 Robot.drivetrain.getLocalization().reset(trajectorySource.get().getFirstState().getState().getPose());
 }

 LiveDashboard.INSTANCE.setFollowingPath(true);

 mUpdateNotifier = new Notifier(() -> {
 output = trajectoryTracker.nextState(driveBase.getRobotPosition(), TimeUnitsKt.getSecond(Timer.getFPGATimestamp()));

 TrajectorySamplePoint<TimedEntry<Pose2dWithCurvature>> referencePoint = trajectoryTracker.getReferencePoint();
 if (referencePoint != null) {
 Pose2d referencePose = referencePoint.getState().getState().getPose();

 LiveDashboard.INSTANCE.setPathX(referencePose.getTranslation().getX().getFeet());
 LiveDashboard.INSTANCE.setPathY(referencePose.getTranslation().getY().getFeet());
 LiveDashboard.INSTANCE.setPathHeading(referencePose.getRotation().getRadian());

 }

 driveBase.setOutput(output);

 });
 mUpdateNotifier.startPeriodic(0.01);
 }

 @Override
 public void end(boolean interrupted) {
 mUpdateNotifier.stop();
 driveBase.stop();
 LiveDashboard.INSTANCE.setFollowingPath(false);
 }

 @Override
 public boolean isFinished() {
 return trajectoryTracker.isFinished();
 }

 public TimedTrajectory<Pose2dWithCurvature> getTrajectory() {
 return this.trajectorySource.get();
 }

}

Kotlin

// coming soon, coz i don't know Kotlin at all

Example path following drivebases

Some example drivebases to get you started on path following quickly. For path following Commands, see :/falconlib-pathing

An example TalonSRX drivetrain with a NavX AHRS gyro

Java

public class DriveTrain extends SendableSubsystemBase /* or Subsystem */ implements DifferentialTrackerDriveBase {

 public static final double kRobotMass = 50 /* Robot, kg */ + 5f /* Battery, kg */ + 2f /* Bumpers, kg */;
 public static final double kRobotMomentOfInertia = 10.0; // kg m^2 // TODO Tune
 public static final double kRobotAngularDrag = 12.0; // N*m / (rad/sec)

 public static final double kWheelRadius = Util.toMeters(2f / 12f);// meters. TODO tune
 public static final double kTrackWidth = Util.toMeters(26f / 12f);// meters

 private static final double kVDriveLeftLow = 0.274 * 1d; // Volts per radians per second - Calculated emperically
 private static final double kADriveLeftLow = 0.032 * 1d; // Volts per radians per second per second TODO tune
 private static final double kVInterceptLeftLow = 1.05 * 1d; // Volts - tuned!

 private static final double kVDriveRightLow = 0.265 * 1d; // Volts per radians per second - Calculated emperically
 private static final double kADriveRightLow = 0.031 * 1d; // Volts per radians per second per second TODO tune
 private static final double kVInterceptRightLow = 1.02 * 1d; // Volts - tuned!

 public static final DCMotorTransmission kLeftTransmissionModelLowGear = new DCMotorTransmission(1 / kVDriveLeftLow,
 kWheelRadius * kWheelRadius * kRobotMass / (2.0 * kADriveLeftLow),
 kVInterceptLeftLow);

 public static final DCMotorTransmission kRightTransmissionModelLowGear = new DCMotorTransmission(1 / kVDriveRightLow,
 kWheelRadius * kWheelRadius * kRobotMass / (2.0 * kADriveRightLow),
 kVInterceptRightLow);

 private FalconSRX<Length> left, right;

 private Localization localization;

 private RamseteTracker ramseteTracker;

 private AHRS gyro; // a NavX

 private Notifier localizationNotifier;

 /* Ramsete constants */
 public static final double kDriveBeta = 2 * 1d; // Inverse meters squared
 public static final double kDriveZeta = 0.7 * 1d; // Unitless dampening co-efficient

 public mlem() {
 var nativeUnitModel = new NativeUnitLengthModel(NativeUnitKt.getNativeUnits(4096), LengthKt.getInch(2));
 left = new FalconSRX<Length>(0, nativeUnitModel, TimeUnitsKt.getMillisecond(10));
 right = new FalconSRX<Length>(0, nativeUnitModel, TimeUnitsKt.getMillisecond(10));

 gyro = new AHRS(Port.kMXP);

 /* Create a localization object because lamda expressions are fun */
 localization = new TankEncoderLocalization(() -> Rotation2dKt.getDegree(getGyro(true)),
 () -> getLeftMotor().getSensorPosition(), () -> getRightMotor().getSensorPosition());
 /* set the robot pose to 0,0,0 */
 localization.reset(new Pose2d());

 ramseteTracker = new RamseteTracker(kDriveBeta, kDriveZeta);

 localizationNotifier = new Notifier(() -> {
 this.getLocalization().update();
 });
 localizationNotifier.startPeriodic(1d / 100d);

 }

 private Localization getLocalization() {
 return localization;
 }

 private double getGyro(boolean isReversed) {
 return gyro.getFusedHeading() * ((isReversed) ? -1 : 1);
 }

 @Override
 public FalconSRX<Length> getLeftMotor() {
 return left;
 }

 @Override
 public FalconSRX<Length> getRightMotor() {
 return right;
 }

 @Override
 public Pose2d getRobotPosition() {
 return null;
 }

 @Override
 public TrajectoryTracker getTrajectoryTracker() {
 return null;
 }

 @Override
 public DifferentialDrive getDifferentialDrive() {
 return null;
 }

}

Kotlin

// coming soon, coz i don't know Kotlin at all

Index

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Team 5940 Robotics Documentation

 		
 Welcome to Team 5940’s Documentation!

 		
 FalconLibrary

 		
 Overview

 		
 Java Interoperability

 		
 Contributing

 		
 FalconDashboard

 		
 Running FalconDashboard

 		
 Generating code

 		
 FalconLibrary Units and Math

 		
 Summery

 		
 Time

 		
 Length

 		
 Rotation2d

 		
 NativeUnit

 		
 Velocity

 		
 Acceleration

 		
 Translation2d

 		
 Pose2d

 		
 Twist2d

 		
 Pose2dWithCurvature

 		
 Other Units

 		
 FalconLibrary’s Command-based Implememntation

 		
 Pathing with FalconLibrary

 		
 Summery

 		
 Odometry

 		
 Following paths

 		
 The DifferentialTrackerDriveBase

 		
 An example path following command

 		
 Example path following drivebases

 		
 An example TalonSRX drivetrain with a NavX AHRS gyro

_images/dash2.png
Generator Live Visualizer

Position Velocity

Baseline o5
D Reversed
_— 7.0
Optimize Curvature
D Auto Path Finding (Experimental)
6.5
0 Start Velocity (f/s)
6.0
0 End Velocity (f/s)
7 Max Velocity (f/s) 5.5
8 Max Acceleration (f/s/s) -
8 Max Centripetal Acceleration (f/s/s)
4.5
Add Velocity Limit Constraint in Region
X Y Angle 40
5.288 17.62 0.0
21.665 21.864 28.0 a5
21.804 24.394 150.0
3.0
2.5
2.0
1.5
1.0
< >
Add Waypoint 0.5
Remove Waypoint
0.0

Generate
0.00 0.25 0.50 0.75 1.00 1.25 1.560 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.76 4.00 4.25

_images/dash3.png
Generator Live Visualizer

Position Velocity

Baseline T
D Reversed 26
Optimize Curvature 25
D Auto Path Finding (Experimental) 24

23
0 Start Velocity (f/s)

22
0 End Velocity (f/s) 21
7 Max Velocity (f/s) 20

19
8 Max Acceleration (f/s/s) -
8 Max Centripetal Acceleration (f/s/s) 17

. - L. . 16 Generated Code
Add Velocity Limit Constraint in Region

15

var baseline = Trajectories.generateTrajectory(

X Y Angle | i Arrays.asList (
5.288 17.62 0.0 14 A new Pose2d (LengthKt.getFeet (5.288),
F LengthKt.getFeet (17.62),
21.665 21.864 28.0 13 Rotation2dKt.getDegree (0)),
21.804 24.394 150.0 - B 4 new Pose2d(LengthKt.getFeet (21.665),
g ‘ - LengthKt.getFeet (21.864),
1 - . - Rotation2dKt.getDegree (28.041)),
r -

new Pose2d(LengthKt.getFeet (21.804),
LengthKt.getFeet (24.394),
Rotation2dKt.getDegree (149.903))

0 B o .

9 I B) s
Arrays.asList (new CentripetalAccelerationConstraint (

8 AccelerationKt.getAcceleration (LengthKt.getFeet (8.0)))),
VelocityKt.getVelocity (LengthKt.getFeet (0.0)),

7 VelocityKt.getVelocity (LengthKt.getFeet (0.0)),
VelocityKt.getVelocity (LengthKt.getFeet (7.0)),

6 AccelerationKt.getAcceleration (LengthKt.getFeet (8.0)),
false

5 true

Add Waypoint 2

Remove Waypoint ! This code is generated to be used with FalconLibrary

Generate 0

_images/dash1.png
Generator Live Visualizer

Position Velocity
Baseline

27

D Reversed 26
Optimize Curvature 25

D Auto Path Finding (Experimental) 24

23
0 Start Velocity (f/s)

22

End Velocity (f/s) 21
Max Velocity (f/s) 20

19

Max Acceleration (f/s/s) s

Max Centripetal Acceleration (f/s/s) 17

Add Velocity Limit Constraint in Region ik

15 —_]; v H - s - -l_—
X Y Angle
0.0 14 el ‘

28.0 13

. — ipgaERE) RERE RN -

1

e

o - T\ 29

Generate

