

 Navigation

 	
 index

 	
 next |

 	21st Century Fortran 0.0 documentation

Modern Fortran for Modern People

	Introduction

	Getting started
	Before you start

	Compiling a hello world program

	Building portable Fortran code with CMake

	Fixed or free form

	Structuring your code
	Subroutines

	Functions

	Modules

	Organizing larger projects

	Passing information within the code

	Input and output
	Writing to the screen/stdout

	Writing/reading to/from the disk

	Controlling the code flow
	Branching with if/else

	Branching with case

	Loops

	Working with arrays
	Static arrays

	Dynamic arrays

	Custom dynamic allocation schemes

	Passing arrays to functions/subroutines

	Friendly advice

	Bad practices
	Common blocks

	implicit.h

	SIXLTR variables

	Fixed-form

	Large static arrays

	Long subroutines

	Functional programming features

	Elemental functions

	Pure functions

	Good practices
	Version control

	implicit none

	Implementation hiding

	Module names match file names

	File suffix

	Explicitly list all data and methods used from a module

	Good comments

	Object-oriented programming features

	Private and public methods and data

	Parallelization
	MPI

	OpenMP

	CUDA

	Performance
	Premature optimization

	Profiling

	Optimization aspects

	Using math libraries

	Debugging
	Ye olde print statement debugging

	Gdb

	Valgrind

	What else is there
	Intrinsic functions and subroutines

	Kinds

	Interoperability with other languages

 Copyright 2014, Radovan Bast.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	21st Century Fortran 0.0 documentation

Introduction

Fortran is not dead - quite the opposite. And it is better than its reputation.
I wrote this tutorial after having worked with Fortran (77 and 90+) for over a
decade. During that time I have been exposed to many lines of code and I have
seen what works and what fails. Good programming practices come from
experience. And experience comes from bad programming practices. During the
past decade I have written tons of horrible code and made every possible
mistake. The result of this learning process and the aim of this tutorial is to
give a short introduction into the features of Fortran that you will need and
that will work, scale, and remain maintainable and manageable.

Managing code complexity is the key for writing maintainable code. Curiously,
many scientists write code without ever worrying about maintainability. But it
really is code complexity rather than performance that will decide whether your
code will be still alive ten years from now.

 Copyright 2014, Radovan Bast.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	21st Century Fortran 0.0 documentation

Getting started

Before you start

Fortran is a compiled language so we will need a compiler.
It will be useful to install GFortran and CMake.

On Debian-like distributions:

$ sudo apt-get install gfortran cmake

GFortran and CMake are free. It is no problem to use a Fortran compiler
provided by another vendor instead of GFortran (Intel, PGI, Cray, XL).

Compiling a hello world program

The classic hello world program to get us started:

program hello

 implicit none

 print *, 'hello world'

end program

Copy-paste it to your editor and save it as hello.F90.
You can compile it with (example GFortran):

$ gfortran hello.F90 -o hello.x

Then run the code with:

$./hello.x

hello world

Exciting times. Now we can begin.

Building portable Fortran code with CMake

Write me ...

Fixed or free form

Write me ...

 Copyright 2014, Radovan Bast.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	21st Century Fortran 0.0 documentation

Structuring your code

Subroutines

Write me ...

Functions

Write me ...

Modules

Write me ...

Organizing larger projects

Write me ...

Passing information within the code

Write me ...

 Copyright 2014, Radovan Bast.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	21st Century Fortran 0.0 documentation

Input and output

Writing to the screen/stdout

Write me ...

Writing/reading to/from the disk

Write me ...

 Copyright 2014, Radovan Bast.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	21st Century Fortran 0.0 documentation

Controlling the code flow

Branching with if/else

Write me ...

Branching with case

Write me ...

Loops

Write me ...

 Copyright 2014, Radovan Bast.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	21st Century Fortran 0.0 documentation

Working with arrays

Sooner or later in your code you will need arrays to hold data (floating point
numbers, integers, characters, logicals) and you need to allocate space for
those. You can allocate this space statically or dynamically. Below we will
discuss examples of both.

Static arrays

Static allocation means that the array size is known at compile time. For
instance in the example below we specify an array where we can store 1000*3
double precision floating point coordinates for up to 1000 atoms:

integer, parameter :: MAX_NUM_ATOMS = 1000

real(8) :: coordinates(MAX_NUM_ATOMS, 3)

Other examples:

! a static array holding 200 double precision numbers
real(8) :: array1(200)

! a static 2-dimensional array holding 81 integers
integer :: array2(9, 9)

! a static array holding 401 logicals indexed from 0 to 400
logical :: array3(0:400)

There are at least two disadvantages of statically allocated arrays: First, if
we need to resize them, we need to recompile the code which is inconvenient.
The other disadvantage is that static arrays are always allocated, even if we
end up not using them during the calculation.

Therefore the recommendation is to not use static allocations unless the array
is small and known to “never” change.

It is also a bad idea to introduce static arrays “temporarily” for testing
because you are too lazy to allocate and deallocate dynamically. Very often
you will forget to change them later and they remain “temporary” for years or
decades until someday somebody writes out of array bounds and this is then
no fun.

! you: we will "never" need more than 10000 here
! future: wrong, one day you will
integer :: myarray(10000)

Dynamic arrays

Dynamic is typically better than static, with one exception: if statically
allocating program runs out of memory, it crashes immediately. A dynamically
allocating program can run ouf of memory late which can be frustrating (see
below).

This is how it works:

! allocatable 1-dimensional double precision array
real(8), allocatable :: myarray1(:)

! allocatable 2-dimensional integer array
integer, allocatable :: myarray2(:, :)

! here we allocate both
allocate(myarray1(1000))
allocate(myarray2(500, 500))

! in between we do some work ...

! here we deallocate both
deallocate(myarray1)
deallocate(myarray2)

Custom dynamic allocation schemes

In the good old Fortran 77 days dynamic allocation was not possible but it was
nevertheless needed. One way out was to statically or dynamically (using
another language) allocate a big block of memory at the beginning of the
calculation and to manage the memory block during the calculation by
subdividing it and to “allocate” and “deallocate” with custom functions. Such a
custom dynamic allocation is present in a number of legacy codes. One problem
with this is that out of bounds memory access bugs can be difficult to detect
because they cannot be detected by the compiler or tools typically designed to
detect such bugs. This is because for the compiler and the tools such out of
bounds access bugs can appear as regular in-bounds reads and writes because
they all can happen within the one big block of memory. The other disadvantage
is that code that uses custom dynamic allocation schemes becomes less modular
(because the big chunk of memory is often carried around through many levels of
routine calls) and less portable (because you cannot reuse a routine which
depends on a custom solution that another code may not provide).

Passing arrays to functions/subroutines

Write me ...

Friendly advice

If you write a code that allocates possibly a lot of memory late in a possibly
long calculation, plan your code for a memory dry-run option so that the code
can be run traversing all allocations and deallocations without doing actual
computations. This is very helpful in avoiding the otherwise extremely
annoying experience of seeing a calculation crash after two weeks of runtime
because the code fails to allocate an array late in the calculation.

 Copyright 2014, Radovan Bast.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	21st Century Fortran 0.0 documentation

Bad practices

Common blocks

implicit.h

Whenever you see this:

#include "implicit.h"

or this:

implicit real(8) (a-h,o-z)

or any implicit statement that is not implicit none, then run. With the
implicit statement you can infer the type (in the above case real(8) from
the first character of a variable or parameter. In other words implicit
real(8) (a-h,o-z) means that we do not have to explicitly declare
variables/parameters and all variables/parameters starting with i-n will be
implicitly integers and all others implicitly double precision numbers.

This may sound like a good idea but is one of the greatest evils of the
language. The reason for this is that you will very easily introduce typos
which are difficult to detect. This may lead to undefined behavior. The other
problem is that implicit in combination with common blocks leaves you
completely in the blind about where variables are defined and which common
blocks are used or unused.

Avoid the implicit statement at any cost and always use implicit none
which forces you to declare all variables. Generations of programmers and your
future self will thank you.

SIXLTR variables

In the good old days six character variables were the norm and a limitation.
Today they are not.

Try to guess the meaning of the following variables:

NWNABA, DIPDER, TSTINP, FCKDDR, GSQUAD, MSDIDI, SUPMAT

Exactly. We have no idea. In the 21st century there is no reason
to not use self-explaining variable names. The six character limitation
is long gone.

Fixed-form

Large static arrays

Long subroutines

If a subroutine does not fit into your laptop terminal screen, then it is too
long. Divide and conquer.

Functional programming features

Elemental functions

Pure functions

 Copyright 2014, Radovan Bast.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	21st Century Fortran 0.0 documentation

Good practices

Version control

implicit none

Implementation hiding

Module names match file names

Consider you have a module called some_functionality:

module some_functionality

contains

 ...

end module

In this case it is good practice to also call the file either
some_functionality.f90 or some_functionality.F90 (for the suffix see next
section).

The reason is that if you see a compilation or linking problem in a specific
module you know immediately where to find it. It is frustrating to work with
projects where the module names do not match file names.

For the same reason it is good practice to use only one module per file instead
of packing several modules into one file. The latter is possible but confusing.
Be an organized programmer and keep modules separate.

File suffix

Explicitly list all data and methods used from a module

Citing from the Zen of Python:
“Namespaces are one honking great idea – let’s do more of those!”

Namespaces are one honking great idea in Fortran, too.

Therefore the explicit use statement

use some_module, only: function1, subroutine1, subroutine2

is better than the general statement

use some_module

for three reasons: 1) the explicit use statement with “only” pollutes the
namespace less, 2) the reader of this file can find out from which module
functions, subroutines, and variables are imported, and 3) it makes it easy to
identify symbols which are not used after a refactoring round.

Good comments

Object-oriented programming features

Private and public methods and data

 Copyright 2014, Radovan Bast.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	21st Century Fortran 0.0 documentation

Parallelization

MPI

Write me ...

OpenMP

Write me ...

CUDA

Write me ...

 Copyright 2014, Radovan Bast.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	21st Century Fortran 0.0 documentation

Performance

Premature optimization

Profiling

Optimization aspects

Using math libraries

 Copyright 2014, Radovan Bast.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	21st Century Fortran 0.0 documentation

Debugging

Ye olde print statement debugging

Gdb

Valgrind

 Copyright 2014, Radovan Bast.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	21st Century Fortran 0.0 documentation

What else is there

Intrinsic functions and subroutines

Kinds

Interoperability with other languages

 Copyright 2014, Radovan Bast.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	21st Century Fortran 0.0 documentation

Index

 Copyright 2014, Radovan Bast.
 Created using Sphinx 1.3.5.

 _static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/minus.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		21st Century Fortran 0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Radovan Bast.
 Created using Sphinx 1.3.5.

