

2019-FRC

[image: _images/2019-FRC.svg]
 [https://travis-ci.org/frc3197/2019-FRC][image: Documentation Status]
 [https://2019-frc.readthedocs.io/en/latest/?badge=latest]Code for 3197’s Robot competing in the 2019 challenge, Destination: Deep Space

Code-Related

I2C [https://2019-frc.readthedocs.io/en/documentation/I2C.html]

VSCode Basics [https://2019-frc.readthedocs.io/en/documentation/VSCode%20Basics.html]

Class Documentation

Updating/Installing Firmware

Updating and Imaging the RoboRIO [https://2019-frc.readthedocs.io/en/documentation/Updating%20Instructions/Updating%20and%20Imaging%20the%20RoboRIO.html]

Updating REV Spark Max Firmware [https://2019-frc.readthedocs.io/en/documentation/Updating%20Instructions/Updating%20Firmware%20of%20REV%20Spark%20Max's.html]

Diagrams/Configurations

Motor Controller Spreadsheet [https://docs.google.com/spreadsheets/d/14p9fdd08mrI9wpgqd_k9QANKFcTs7CDPGgKoO7wAz68/edit?usp=sharing]

Controller Configurations

[image: _images/Controller%20Configuration.png]

	Presets in brackets correspond to the Ctrl variant. For example, on Operator, A + Up is equal to Cargo Lv. 3.

	The A button on both controllers needs to be held in order to access their functions.

	X and Y control the Hatch Panel Mechanism, henceforth known as the “Bird.”

	Driver Left Trigger and Right Trigger control the Forward Climber while Driver Left Bumper and Right Bumper control the Backward Climber.

	Left and Right on all joysticks are currently unused.

	CONTROLLER MAP CURRENTLY OUTDATED. WILL UPDATE SOON.

Helpful Resources

WPILib Documentation [http://first.wpi.edu/FRC/roborio/release/docs/java/]

Limelight Documentation [http://docs.limelightvision.io/en/latest/]

REV Robotics Documentation [http://www.revrobotics.com/content/sw/max/sw-docs/java/com/revrobotics/package-summary.html]

reStructuredText Basics [http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html]

Markdown Basics [https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet#code]

Index

I2C

I2C has been mostly solved as of the 2019 season. On the RoboRIO, the SDA and SCL ports are flipped. To solve this, the SDA and SCL wires
on the sensor were physically flipped. In the future, when using I2C sensors, check the sensors documentation and how the wires
are arranged, and then physically rearrange to match the RoboRIO ports.

REV Color Sensor V2

The REV Color Sensor V2 is a line sensor that uses I2C to communicate. WPILib contains libraries on communicating with I2C devices,
and sending commands to the device require writing bits to specific addresses.

The REV Color Sensor has the I2C address 0x39.

Important Addresses

0x00 is the enable register.

0x12 is the device ID register. Returns a hexadecimal value.

	0x60 = TMD37821

	0x69 = TMD37823

0x13 is the status register (Read-Only).

0x14 and 0x15 are the low and high Clear data registers respectively.

0x16 and 0x17 are the low and high Red data registers respectively.

0x18 and 0x19 are the low and high Green data registers respectively.

0x1A and 0x1B are the low and high Blue data registers respectively.

0x1C and 0x1D are the low and high Proximity data registers respectively.

Instructions

The following dependencies are needed:

import java.nio.ByteBuffer;
import java.nio.ByteOrder;

import edu.wpi.first.wpilibj.I2C;
import org.team3197.frc2019.robot.Robot;

To enable a device, the following code will work for the REV Color Sensor:

protected final static int COMMAND_REGISTER_BIT = 0x80;

public ColorSensor() {
 sensor = new I2C(I2C.Port.kOnboard, 0x39); // port, I2c address

 sensor.write(COMMAND_REGISTER_BIT | 0x00, 0b00000011); // power on, color sensor on
}

The following code writes 0b00000011 to 0x00. As of the 2019 season, it is unknown why the
bitwise or operation with COMMAND_REGISTER_BIT (0x80) is needed. It is also unknown what 0b00000011
means in the context of the color sensor.

To read from any register, the following code will work:

protected final static int COMMAND_REGISTER_BIT = 0x80;
protected final static int MULTI_BYTE_BIT = 0x20;

protected int readWordRegister(int address) {
 ByteBuffer buf = ByteBuffer.allocate(2);
 sensor.read(COMMAND_REGISTER_BIT | MULTI_BYTE_BIT | address, 2, buf);
 buf.order(ByteOrder.LITTLE_ENDIAN);
 return buf.getShort(0);
}

ByteBuffer creates a bit of buffer for the data from the color sensor to temporarily stay in.
The read function reads 2 bytes from the requested address and stores it in the created buffer.
It is currently unkown why the bitwise or operations with COMMAND_REGISTER_BIT (0x80) and
MULTI_BYTE_BIT (0x20) are needed.

For example, to read the amount of red the color sensor is picking up, you would use the following commands:

protected final static int RDATA_REGISTER = 0x16;

public int red() {
 return readWordRegister(RDATA_REGISTER);
}

This would essentially read from 0x16 and return the lower red byte. Unless if necessary, the upper byte registers
usually will not be used.

For debugging purposes, the read and write functions return true if aborted, and false if the
operation was successfully completed.

Resources

Chief Delphi Issue Forum [https://www.chiefdelphi.com/t/rev-color-sensor-v2-and-roborio-communication/342075/]

Full Documentation for REV Color Sensor V2 [http://www.revrobotics.com/content/docs/TMD3782_v2.pdf/]

Full Github Issue Thread [https://github.com/frc3197/2019-FRC/issues/1/]

Documentation for the I2C class in WPILibJ [http://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/I2C.html#read(int,int,byte%5B%5D)]

VSCode Basics

Keyboard Shortcuts and Command Line/Palette Commands

The following are keybinds and command line/palette commands that are useful.

Keyboard Shortcuts in VSCode

	Ctrl+Shift+P opens up the command palette.

	Alt+Click allows you to place multiple cursors. This way, you can edit multiple similar lines of code at the same time.

Gradlew Commands

Gradlew is the system that we use for building and deploying our robot code. It’s contained as a file, and the command ./gradlew is required at the beginning of each of these commands. The . just signifies the current directory and /gradlew directs the computer to this folder where it can run the command.

	./gradlew downloadAll downloads all dependencies. This doesn’t work on school WiFi as many of the dependencies are blocked. Download these on a hotspot.

	./gradlew build builds all dependencies. This requires a downloadAll.

Command Palette

The command palette is a VSCode function that can be accessed by using Ctrl+Shift+P. It contains many functions that we will be using.

	WPILib: Build Robot Code builds the robot code. This is required in order to deploy the code onto the robot. By opening the command palette and typing in “build” this command will usually come up first.

	WPILib: Deploy Robot Code deploys the robot code. You must be connected to the RoboRIO first for this to work. By opening the command palette and typing in “deploy” this command will usually come up first.

	Java: Clean the Java language server workspace cleans the Java workspace. Primarily used when VSCode starts to not recognize many of the imports. Primarily used in “VSCode does not recognize WPILib imports and functions” under “Known Problems and Fixes.”

Known Problems and Fixes

The following are known problems that exist and workarounds for said problems.

VSCode does not recognize WPILib imports and functions.

VSCode will occasionally throw errors such as [Java] The import edu.wpi.first.wpilibj.import.example cannot be resolved [268435846]. This is because VSCode cannot find the dependencies, and as such doesn’t know what you’re trying to import. This will most likely result in all WPILib methods/objects throwing errors such as [Java] ObjectName cannot be resolved to a type [16777218] or [Java] The method exampleMethod(input) is undefined for the type class.ObjectName [67108964].

To solve this, you need to re-download all dependencies.

	Go to the terminal and run ./gradlew downloadAll. This step does not work on school WiFi and requires a hotspot.

	Once it’s done downloading all, open up the command palette with Ctrl+Shift+P and type in “clean” to access the command Java: Clean the Java language server workspace. Once VSCode has restarted, all related errors should be resolved.

Required Extensions

	WPILib

	VS Live Share Extension Pack (VS Live Share Audio not necessary)

	Java Extension Pack

org.team3197.frc2019.robot.Main

Main is the class that initializes and defines the robot. Is usually pre-generated in a new robot project.

Dependencies

	edu.wpi.first.wpilibj.RobotBase

Commands

public static void main(String… args)

Starts the Robot.

org.team3197.frc2019.robot.OI

OI defines all of the buttons on the joystick that control the robot. OI stands for “Operator Input.”
Within OI are placed constructers for the Controllers and respective buttons, as well as what each buttons
does.

Dependencies

	edu.wpi.first.wpilibj.GenericHID.Hand

	edu.wpi.first.wpilibj.XboxController

	edu.wpi.first.wpilibj.buttons.JoystickButton

	edu.wpi.first.wpilibj.buttons.POVButton

Commands

static

Pre-generated in a new robot project. Place whenPressed commands here.

Example:

driverDPadLeft.whenPressed(Robot.driveTrain.changeDriveGyro);

secondaryA.whenPressed(Robot.arm.reset);

To do: Figure out in what cases would a button require whenPressed v. an actual function.

public static double arcadeDriveY()

Drives the motors in arcade drive mode. Moves Robot forwards and backwards.

public static double arcadeDriveR()

Drives the motors in arcade drive mode. Moves Robot right and left.

public static double tankDriveLeft()

Drives the motors in tank drive mode. Controls the drive motors on the left side.

public static double tankDriveRight()

Drives the motors in tank drive mode. Controls the drive motors on the right side.

public static double elevatorSpeed()

Drives the elevator motors in order to move the elevator up and down.
Math:

secondaryRightTrigger - secondaryLeftTrigger
//if secondaryRightTrigger has a value, then elevator motor will move in a positive manner.
//if secondaryLeftTrigger has a value, then elevator motor will move in a negative manner.

public static double elbowSpeed()

Drives the elbow motor. Multiplied by a constant (0.25) to make it slower.

public static double wristSpeed()

Drives the wrist motor. Multiplied by a constant (0.5) to make it slower.

public static double erectorSpeed()

Drives the climber motor in order to move the knives backwards and forwards.
Math:

driverRightTrigger - driverLeftTrigger
//if driverRightTrigger has a value, then climber motor will move in a positive manner.
//if driverLeftTrigger has a value, then climber motor will move in a negative manner.

public static double manipulatorSpeed()

Drives the manipulator in order to move the wheels that suck the ball in.
Math/Logic:

(if secondaryRightBumper is pressed, return 1 otherwise 0) + (if secondaryLeftBumper is pressed, return -1 otherwise 0)
//allows for both bumpers to be pressed, but rollers will not move.

public static double hatchSpeed()

Drives the hatch mechanism in order to move the beak that hooks up hatch panels.
Math/Logic:

(if driverRightBumper is pressed, return 1 otherwise 0) + (if driverLeftBumper is pressed, return -1 otherwise 0)
//allows for both bumpers to be pressed, but rollers will not move.

org.team3197.frc2019.robot.Robot

The class org.team3197.frc2019.robot.Robot
(inheriting methods from wdu.wpi.first.wpilibj.TimedRobot)
is the main class that contains the functions that initializes the robot.

Subsystems should be initialized here.

Example:

public static SubsystemBoi subsystemBoi = new SubSystemBoi();

Network tables should also be initialized here.

Example:

public static NetWorkTableInstance ntInst = NetworkTableInstance.getDefault();
public static NetworkTable table;

Dependencies

	edu.wpi.first.wpilibj.TimedRobot

	edu.wpi.first.wpilibj.command.Scheduler

	edu.wpi.first.networktables.NetworkTable

	edu.wpi.first.networktables.NetworkTableInstance

Commands

public void robotInit()

Initializes the Robot.

public void robotPeriodic()

Code that runs periodically goes here.

public void disabledInit()

Initializes disabled mode.

public void disabledPeriodic()

Code that runs periodically while the robot is disabled goes here.

public void autonomousInit()

Initializes autonomous mode.

public void autonomousPeriodic()

Code that runs periodically while the robot is in autonomous goes here.

public void teleopInit()

Initializes teleop mode.

public void teleopPeriodic()

Code that runs periodically while the robot is in teleop goes here.

public void testInit()

Initializes test mode.

public void testPeriodic()

Code that runs periodically while the robot is in test goes here.

org.team3197.frc2019.robot.RobotMap

RobotMap deefines multiple parts of the Robot. Essentially, it “maps” out the robot
by defining multiple different parts and constants.

Example:

public static final double visionTargetArea = 32000;

Dependencies

No Dependencies

Commands

public static enum CANSparkMaxID

Numbers the CANSparkMax motor controllers.

See Motor Controller Spreadsheet [https://docs.google.com/spreadsheets/d/14p9fdd08mrI9wpgqd_k9QANKFcTs7CDPGgKoO7wAz68/edit?usp=sharing] for more details.

public static enum ArmPreset

Sets the preset positions for the arm when placing Hatch Panels or Cargo.

public static enum ElevatorPreset

Sets the preset positions for the elevator when placing Hatch Panels or Cargo.

public static enum DeadbandType

Sets the deadband for specific motors. Deadband is in decimal percent (10% = 0.1)

public static enum DriveTrainSide

Used only for Drive Train Test. Sets options for left, right, or both sides of the drive train.

public static enum CANSparkPID

Sets PID values for CANSparkMax’s. Used but all 0’s so useless.

public static enum ElevatorPID

Sets PID values for the Elevator motors. Used but all 0’s so useless.

public static enum Channel

Defines ports where Gyros are placed.

public static enum GyroSensitivity

Defines multiplier for Gyro stuff.

public static enum MaxSpeeds

Defines multipliers that sets max speeds for certain motors.

public static enum MaxSpeed

SOON TO BE ERASED FROM EXISTENCE.

org.team3197.frc2019.robot.commands.AlignTurn

Commands

org.team3197.frc2019.robot.commands.ArticulateToPreset

Commands

org.team3197.frc2019.robot.commands.ElevateToPreset

Commands

org.team3197.frc2019.robot.commands.Flex

Commands

org.team3197.frc2019.robot.commands.defaults.Articulate

Commands

org.team3197.frc2019.robot.commands.defaults.Drive

Commands

org.team3197.frc2019.robot.commands.defaults.Elevate

Commands

org.team3197.frc2019.robot.commands.defaults.Erect

Commands

org.team3197.frc2019.robot.commands.defaults.Manipulate

Commands

org.team3197.frc2019.robot.commands.defaults.Speak

Commands

org.team3197.frc2019.robot.commands.test.DriveTrainRampTest

Commands

org.team3197.frc2019.robot.commands.test.DriveTrainTest

Commands

org.team3197.frc2019.robot.subsystems.Arm

Dependencies

	com.revrobotics.CANDigitalInput [http://www.revrobotics.com/content/sw/max/sw-docs/java/com/revrobotics/CANDigitalInput.html]

	com.revrobotics.CANDigitalInput.LimitSwitchPolarity [http://www.revrobotics.com/content/sw/max/sw-docs/java/com/revrobotics/CANDigitalInput.LimitSwitchPolarity.html]

	com.revrobotics.CANSparkMax [http://www.revrobotics.com/content/sw/max/sw-docs/java/com/revrobotics/CANSparkMax.html]

	com.revrobotics.CANSparkMaxLowLevel.MotorType [http://www.revrobotics.com/content/sw/max/sw-docs/java/com/revrobotics/CANSparkMaxLowLevel.MotorType.html]

	edu.wpi.first.wpilibj.AnalogGyro [http://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/AnalogGyro.html]

	edu.wpi.first.wpilibj.command.InstantCommand [http://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/command/InstantCommand.html]

	edu.wpi.first.wpilibj.command.Subsystem [http://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/command/Subsystem.html]

	edu.wpi.first.wpilibj.smartdashboard.SmartDashboard [http://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/smartdashboard/SmartDashboard.html]

	frc.robot.RobotMap [https://2019-frc.readthedocs.io/en/documentation/Class%20Documentation/RobotMap.html]

	frc.robot.RobotMap.Channel [https://2019-frc.readthedocs.io/en/documentation/Class%20Documentation/RobotMap.html#public-static-enum-channel]

	frc.robot.RobotMap.DeadbandType [https://2019-frc.readthedocs.io/en/documentation/Class%20Documentation/RobotMap.html#public-static-enum-deadbandtype]

	frc.robot.RobotMap.GyroSensitivity [https://2019-frc.readthedocs.io/en/documentation/Class%20Documentation/RobotMap.html#public-static-enum-gyrosensitivity]

	frc.robot.commands.defaults.Articulate [https://2019-frc.readthedocs.io/en/documentation/Class%20Documentation/Commands/defaults/Articulate.html]

Commands

org.team3197.frc2019.robot.subsystems.CargoManipulator

Commands

org.team3197.frc2019.robot.subsystems.DriveTrain

Commands

org.team3197.frc2019.robot.subsystems.Elevator

Commands

org.team3197.frc2019.robot.subsystems.Erector

Commands

org.team3197.frc2019.robot.subsystems.Hatch

Commands

Updating REV Spark Max Firmware

	Download the latest Spark Max Firmware

	Open up the REV SPARK MAX Client

	While holding down the MODE Button on the Spark Max with a thin object such as a pen, pencil, or paperclip, connect the Spark Max to the computer using a USB-B to mini USB-C cable. DO NOT PLUG INTO CAN PORT OR YOU WILL FRY THE USB PORT ON THE COMPUTER.

	Go to “Firmware” and click “Load Firmware.”

	Select the latest firmware. The imaging should take a few moments.

	Go back to the “Basic” tab and set Idle Mode to “Brake.” This is what we’ll usually want. If the situation calls for it, we’ll want the Idle Mode to be on “Coast” but this probably won’t be needed.

	The “CAN ID” Field lets us name the motor controller. Set to the number you want the motor controller to be. Usually corresponds to the number that electrical has already labelled the motor controller with.

	The REV Spark Max is now properly imaged.

Updating and Imaging the RoboRIO

	Connect computer to RoboRIO using the USB-A (big square-ish end) to USB-B (normal USB end) cable.

	Open up the FRC roboRIO imaging tool. If the application cannot find the roboRIO, ensure that the USB is connected correctly and click rescan.

	Click on “Update Firmware,” select the latest firmware, type in the team number (3197), and click “Update.” This should take a little bit. If the process screws up, check the connection and retry.

	Click on “Format Target,” select the latest image, type in the team number (3197), and click “Reformat.” This should take a little bit. If the process screws up, check the connection and retry.

	The RoboRIO should be correctly updated and imaged.

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 2019-FRC

_static/minus.png

_static/up-pressed.png

_static/up.png

