

Starting from official website

發現官網本身就是最好的範例

The online doc of this is
https://2019-chenpingling.readthedocs.io/en/latest/

[image: _images/00.png]

[image: _images/00b.png]

2019-chenpingling

2019-chenpingling is my playground to practice readthedocs.io.

At first I did it on my local Mac, for both:

*With Sphinx [https://docs.readthedocs.io/en/latest/intro/getting-started-with-sphinx.html]

[image: _images/02.png]

*With MkDocs [https://docs.readthedocs.io/en/latest/intro/getting-started-with-mkdocs.html]

[image: _images/01.png]

Table of Contents

	Writing your first Django app, part 1
	Creating a project

	The development server

	Creating the Polls app

	Write your first view
	path() argument: route

	path() argument: view

	path() argument: kwargs

	path() argument: name

Writing your first Django app, part 1

先取到這文檔的代碼，https://github.com/django/django/edit/master/docs/intro/tutorial01.txt

Let’s learn by example.

Throughout this tutorial, we’ll walk you through the creation of a basic
poll application.

It’ll consist of two parts:

	A public site that lets people view polls and vote in them.

	An admin site that lets you add, change, and delete polls.

We’ll assume you have Django installed already. You can
tell Django is installed and which version by running the following command
in a shell prompt (indicated by the $ prefix):

If Django is installed, you should see the version of your installation. If it
isn’t, you’ll get an error telling “No module named django”.

This tutorial is written for Django latest, which supports Python 3.5 and
later. If the Django version doesn’t match, you can refer to the tutorial for
your version of Django by using the version switcher at the bottom right corner
of this page, or update Django to the newest version. If you’re using an older
version of Python, check faq-python-version-support to find a compatible
version of Django.

See How to install Django for advice on how to remove
older versions of Django and install a newer one.

Where to get help:

If you’re having trouble going through this tutorial, please post a message
to |django-users| or drop by #django on irc.freenode.net to chat with other Django users who might
be able to help.

Creating a project

If this is your first time using Django, you’ll have to take care of some
initial setup. Namely, you’ll need to auto-generate some code that establishes a
Django project – a collection of settings for an instance of Django,
including database configuration, Django-specific options and
application-specific settings.

From the command line, cd into a directory where you’d like to store your
code, then run the following command:

This will create a mysite directory in your current directory. If it didn’t
work, see troubleshooting-django-admin.

Note

You’ll need to avoid naming projects after built-in Python or Django
components. In particular, this means you should avoid using names like
django (which will conflict with Django itself) or test (which
conflicts with a built-in Python package).

Where should this code live?

If your background is in plain old PHP (with no use of modern frameworks),
you’re probably used to putting code under the Web server’s document root
(in a place such as /var/www). With Django, you don’t do that. It’s
not a good idea to put any of this Python code within your Web server’s
document root, because it risks the possibility that people may be able
to view your code over the Web. That’s not good for security.

Put your code in some directory outside of the document root, such as
/home/mycode.

Let’s look at what :djadmin:`startproject` created:

mysite/
 manage.py
 mysite/
 __init__.py
 settings.py
 urls.py
 wsgi.py

These files are:

	The outer mysite/ root directory is just a container for your
project. Its name doesn’t matter to Django; you can rename it to anything
you like.

	manage.py: A command-line utility that lets you interact with this
Django project in various ways. You can read all the details about
manage.py in /ref/django-admin.

	The inner mysite/ directory is the actual Python package for your
project. Its name is the Python package name you’ll need to use to import
anything inside it (e.g. mysite.urls).

	mysite/__init__.py: An empty file that tells Python that this
directory should be considered a Python package. If you’re a Python beginner,
read more about packages in the official Python docs.

	mysite/settings.py: Settings/configuration for this Django
project. /topics/settings will tell you all about how settings
work.

	mysite/urls.py: The URL declarations for this Django project; a
“table of contents” of your Django-powered site. You can read more about
URLs in /topics/http/urls.

	mysite/wsgi.py: An entry-point for WSGI-compatible web servers to
serve your project. See /howto/deployment/wsgi/index for more details.

The development server

Let’s verify your Django project works. Change into the outer mysite directory, if
you haven’t already, and run the following commands:

You’ll see the following output on the command line:

Performing system checks…

System check identified no issues (0 silenced).

You have unapplied migrations; your app may not work properly until they are applied.
Run 'python manage.py migrate' to apply them.

Dec 30, 2018 - 15:50:53
Django version latest, using settings 'mysite.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Note

Ignore the warning about unapplied database migrations for now; we’ll deal
with the database shortly.

You’ve started the Django development server, a lightweight Web server written
purely in Python. We’ve included this with Django so you can develop things
rapidly, without having to deal with configuring a production server – such as
Apache – until you’re ready for production.

Now’s a good time to note: don’t use this server in anything resembling a
production environment. It’s intended only for use while developing. (We’re in
the business of making Web frameworks, not Web servers.)

Now that the server’s running, visit http://127.0.0.1:8000/ with your Web
browser. You’ll see a “Congratulations!” page, with a rocket taking off.
It worked!

Changing the port

By default, the :djadmin:`runserver` command starts the development server
on the internal IP at port 8000.

If you want to change the server’s port, pass
it as a command-line argument. For instance, this command starts the server
on port 8080:

If you want to change the server’s IP, pass it along with the port. For
example, to listen on all available public IPs (which is useful if you are
running Vagrant or want to show off your work on other computers on the
network), use:

0 is a shortcut for 0.0.0.0. Full docs for the development server
can be found in the :djadmin:`runserver` reference.

Automatic reloading of :djadmin:`runserver`

The development server automatically reloads Python code for each request
as needed. You don’t need to restart the server for code changes to take
effect. However, some actions like adding files don’t trigger a restart,
so you’ll have to restart the server in these cases.

Creating the Polls app

Now that your environment – a “project” – is set up, you’re set to start
doing work.

Each application you write in Django consists of a Python package that follows
a certain convention. Django comes with a utility that automatically generates
the basic directory structure of an app, so you can focus on writing code
rather than creating directories.

Projects vs. apps

What’s the difference between a project and an app? An app is a Web
application that does something – e.g., a Weblog system, a database of
public records or a simple poll app. A project is a collection of
configuration and apps for a particular website. A project can contain
multiple apps. An app can be in multiple projects.

Your apps can live anywhere on your Python path. In
this tutorial, we’ll create our poll app right next to your manage.py
file so that it can be imported as its own top-level module, rather than a
submodule of mysite.

To create your app, make sure you’re in the same directory as manage.py
and type this command:

That’ll create a directory polls, which is laid out like this:

polls/
 __init__.py
 admin.py
 apps.py
 migrations/
 __init__.py
 models.py
 tests.py
 views.py

This directory structure will house the poll application.

Write your first view

Let’s write the first view. Open the file polls/views.py
and put the following Python code in it:

polls/views.py

from django.http import HttpResponse

def index(request):
 return HttpResponse("Hello, world. You're at the polls index.")

This is the simplest view possible in Django. To call the view, we need to map
it to a URL - and for this we need a URLconf.

To create a URLconf in the polls directory, create a file called urls.py.
Your app directory should now look like:

polls/
 __init__.py
 admin.py
 apps.py
 migrations/
 __init__.py
 models.py
 tests.py
 urls.py
 views.py

In the polls/urls.py file include the following code:

polls/urls.py

from django.urls import path

from . import views

urlpatterns = [
 path('', views.index, name='index'),
]

The next step is to point the root URLconf at the polls.urls module. In
mysite/urls.py, add an import for django.urls.include and insert an
include() in the urlpatterns list, so you have:

mysite/urls.py

from django.contrib import admin
from django.urls import include, path

urlpatterns = [
 path('polls/', include('polls.urls')),
 path('admin/', admin.site.urls),
]

The include() function allows referencing other URLconfs.
Whenever Django encounters include(), it chops off whatever
part of the URL matched up to that point and sends the remaining string to the
included URLconf for further processing.

The idea behind include() is to make it easy to
plug-and-play URLs. Since polls are in their own URLconf
(polls/urls.py), they can be placed under “/polls/”, or under
“/fun_polls/”, or under “/content/polls/”, or any other path root, and the
app will still work.

When to use include()

You should always use include() when you include other URL patterns.
admin.site.urls is the only exception to this.

You have now wired an index view into the URLconf. Lets verify it’s
working, run the following command:

Go to http://localhost:8000/polls/ in your browser, and you should see the
text “Hello, world. You’re at the polls index.”, which you defined in the
index view.

Page not found?

If you get an error page here, check that you’re going to
http://localhost:8000/polls/ and not http://localhost:8000/.

The path() function is passed four arguments, two required:
route and view, and two optional: kwargs, and name.
At this point, it’s worth reviewing what these arguments are for.

path() argument: route

route is a string that contains a URL pattern. When processing a request,
Django starts at the first pattern in urlpatterns and makes its way down
the list, comparing the requested URL against each pattern until it finds one
that matches.

Patterns don’t search GET and POST parameters, or the domain name. For example,
in a request to https://www.example.com/myapp/, the URLconf will look for
myapp/. In a request to https://www.example.com/myapp/?page=3, the
URLconf will also look for myapp/.

path() argument: view

When Django finds a matching pattern, it calls the specified view function with
an HttpRequest object as the first argument and any
“captured” values from the route as keyword arguments. We’ll give an example
of this in a bit.

path() argument: kwargs

Arbitrary keyword arguments can be passed in a dictionary to the target view. We
aren’t going to use this feature of Django in the tutorial.

path() argument: name

Naming your URL lets you refer to it unambiguously from elsewhere in Django,
especially from within templates. This powerful feature allows you to make
global changes to the URL patterns of your project while only touching a single
file.

When you’re comfortable with the basic request and response flow, read
part 2 of this tutorial to start working with the
database.

Index

 follow the style of
https://github.com/uxsolutions/bootstrap-datepicker/tree/master/docs

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_images/01.png
< > C ® 127001:8000

IIIIIIIIIIHHIIHHEHII

Welcome to MkDocs Welcome to MkDOCS

Commands
Project layout ‘ For full documentation visit mkdocs.org.
Commands
« mkdocs new [dir-name] - Create a new project.
* mkdocs serve - Start the live-reloading docs server.
« mkdocs build - Build the documentation site.
« mkdocs help - Print this help message.
Project layout
mkdocs . ymL # The configuration file.
docs/
LK) mkdocs — mkdocs serve — 84x8
[(venv) MacAirmake:mkdocs pinglingchen$ mkdocs serve =]
INFO - Building documentation...
INFO - Cleaning site directory

[I 181228 11:08:25 server:298] Serving on http://127.0.0.1:8000

[I 181228 11:08:25 handlers:59] Start watching changes

[I 181228 11:08:25 handlers:61] Start detecting changes

[I 181228 11:08:33 handlers:132] Browser Connected: http://127.0.0.1:8000/

_images/02.png
C @ 127.0.0.1:8000/builddir/

prjooz2

Navigation

Quick search

Go

Welcome to prjoo2’s
documentation!

Indices and tables

« Index
« Module Index
« Search Page

©2018, Mark P. Chen. | Powered by Sphinx 1.8.3

| sphinx002 — Python -m http.server — 113x16

(venv) MacAirmake:sphinx@02 pinglingchen$ python -m http.server

Serving

127.
127.
127.
127.
127.
127.
127.
127.
127.
127.
127.
127.
127.
127.

[SIS IR SIS BT B I S IS S
[SIS IR SIS BT B I S IS S
RPRPRRRPRRPRRRPRR

HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/)
11:21:43

28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018

COOPOOOOO®®

code
"GET
"GET
"GET
"GET
"GET
"GET
"GET
"GET
"GET
"GET
"GET
"GET
"GET

404, message File not found

/livereload HTTP/1.1" 404 -

/ HTTP/1.1" 200 -

/_build/ HTTP/1.1" 200 -

/builddir/ HTTP/1.1" 200 -
/builddir/_static/alabaster.css HTTP/1.1" 200 -
/builddir/_static/pygments.css HTTP/1.1" 200 —
/builddir/_static/documentation_options.js HTTP/1.1" 200 -
/builddir/_static/jquery.js HTTP/1.1" 200 -
/builddir/_static/underscore.js HTTP/1.1" 200 -
/builddir/_static/doctools.js HTTP/1.1" 200 -
/builddir/_static/language_data.js HTTP/1.1" 200 -
/builddir/_static/custom.css HTTP/1.1" 200 -
/builddir/_static/basic.css HTTP/1.1" 200 -

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Starting from official website

 		
 Writing your first Django app, part 1

 		
 Creating a project

 		
 The development server

 		
 Creating the Polls app

 		
 Write your first view

 		
 path() argument: route

 		
 path() argument: view

 		
 path() argument: kwargs

 		
 path() argument: name

_images/00.png
< C @ httpsi//docs.readthedocs.io/en/latest/

Search docs

Getting Started with Sphinx
Getting Started with MkDocs

Importing Your Documentation

Versions

Build Process

Read the Docs features
Connecting Your Account
Support

Frequently Asked Questions
Read the Docs YAML Config
Guides

Public API

Embed API

Webhooks
Badges

Localization of Documentation

Version Control System Integration

8 Read the Docs

Read the Docs: Documentation Simplified

simplifies software documentation by automating building, versioning, and hosting
of your docs for you. Think of it as Continuous Documentation.
Never out of sync

Whenever you push code to your favorite version control system, whether that is Git, Mercurial,
Bazaar, or Subversion, Read the Docs will automatically build your docs so your code and
documentation are always up-to-date.

Multiple versions

Read the Docs can host and build multiple versions of your docs so having a 1.0 version of your
docs and a 2.0 version of your docs is as easy as having a separate branch or tag in your version
control system.

Free and open source

Read the Docs is free and open source and hosts documentation for nearly 100,000 large and
small open source projects in almost every human and computer language;

First steps

Are you new to software documentation or are you looking to use your existing docs with Read the
Docs? Learn about documentation authoring tools such as Sphinx and MkDocs to help you create
fantastic documentation for your project.

« Getting started: |
« Importing your existing documentation

_static/screenshots/index/00b.png
GitHub, Inc. [US] | https://github.com/rtfdreadthedocs.org/edit/master/docs/intro/import-guide.rst

[rtfd / readthedocs.org ©Wwatch~ 209 KsStar 4838 YFork 2676

<> Code D) Issues 297 1 Pull requests 53 [Projects 0 Ll Insights

You're editing a file in a project you don't have write access to. We've created a fork of this project for you to commit your proposed changes to.
Submitting a change to this file will write it to a new branch in your fork, so you can send a pull request.

readthedocs.org / docs / intro / import-guide.rst or cancel

< Editfile = @ Preview changes Spaces & 4 & Softwrap %

To import a documentation repository, visit your 'Read the Docs dashboard’ and click Import .

If you have :doc:’connected your Read the Docs account <../connected-accounts>' to GitHub, Bitbucket, or GitLab,
you will see a list of your repositories that we are able to import.

To import one of these projects, just click the import

icon next to the repository you'd like to import. This will bring up a form that

10 is already filled with your project's information. Feel free to edit any of

11 these properties, and then click wNexts+ to

12 iref:'build your documentation <intro/import-guide:Building your documentations .

13
14 .. Read the Docs dashboard: https://readthedocs.org/dashboard

15 .. Import: https://readthedocs.org/dashboard/ inport

16

17

18 .. figure:: ../_static/inages/first-steps/inport-a-repository.png
19 :align: right

20 +figuidth: 300px

2 itarget: ../_static/inages/first-steps/inport-a-repository.png
2

2 Inporting a repository

_images/00b.png
GitHub, Inc. [US] | https://github.com/rtfdreadthedocs.org/edit/master/docs/intro/import-guide.rst

[rtfd / readthedocs.org ©Wwatch~ 209 KsStar 4838 YFork 2676

<> Code D) Issues 297 1 Pull requests 53 [Projects 0 Ll Insights

You're editing a file in a project you don't have write access to. We've created a fork of this project for you to commit your proposed changes to.
Submitting a change to this file will write it to a new branch in your fork, so you can send a pull request.

readthedocs.org / docs / intro / import-guide.rst or cancel

< Editfile = @ Preview changes Spaces & 4 & Softwrap %

To import a documentation repository, visit your 'Read the Docs dashboard’ and click Import .

If you have :doc:’connected your Read the Docs account <../connected-accounts>' to GitHub, Bitbucket, or GitLab,
you will see a list of your repositories that we are able to import.

To import one of these projects, just click the import

icon next to the repository you'd like to import. This will bring up a form that

10 is already filled with your project's information. Feel free to edit any of

11 these properties, and then click wNexts+ to

12 iref:'build your documentation <intro/import-guide:Building your documentations .

13
14 .. Read the Docs dashboard: https://readthedocs.org/dashboard

15 .. Import: https://readthedocs.org/dashboard/ inport

16

17

18 .. figure:: ../_static/inages/first-steps/inport-a-repository.png
19 :align: right

20 +figuidth: 300px

2 itarget: ../_static/inages/first-steps/inport-a-repository.png
2

2 Inporting a repository

_static/screenshots/index/01.png
< > C ® 127001:8000

IIIIIIIIIIHHIIHHEHII

Welcome to MkDocs Welcome to MkDOCS

Commands
Project layout ‘ For full documentation visit mkdocs.org.
Commands
« mkdocs new [dir-name] - Create a new project.
* mkdocs serve - Start the live-reloading docs server.
« mkdocs build - Build the documentation site.
« mkdocs help - Print this help message.
Project layout
mkdocs . ymL # The configuration file.
docs/
LK) mkdocs — mkdocs serve — 84x8
[(venv) MacAirmake:mkdocs pinglingchen$ mkdocs serve =]
INFO - Building documentation...
INFO - Cleaning site directory

[I 181228 11:08:25 server:298] Serving on http://127.0.0.1:8000

[I 181228 11:08:25 handlers:59] Start watching changes

[I 181228 11:08:25 handlers:61] Start detecting changes

[I 181228 11:08:33 handlers:132] Browser Connected: http://127.0.0.1:8000/

_static/screenshots/index/00.png
< C @ httpsi//docs.readthedocs.io/en/latest/

Search docs

Getting Started with Sphinx
Getting Started with MkDocs

Importing Your Documentation

Versions

Build Process

Read the Docs features
Connecting Your Account
Support

Frequently Asked Questions
Read the Docs YAML Config
Guides

Public API

Embed API

Webhooks
Badges

Localization of Documentation

Version Control System Integration

8 Read the Docs

Read the Docs: Documentation Simplified

simplifies software documentation by automating building, versioning, and hosting
of your docs for you. Think of it as Continuous Documentation.
Never out of sync

Whenever you push code to your favorite version control system, whether that is Git, Mercurial,
Bazaar, or Subversion, Read the Docs will automatically build your docs so your code and
documentation are always up-to-date.

Multiple versions

Read the Docs can host and build multiple versions of your docs so having a 1.0 version of your
docs and a 2.0 version of your docs is as easy as having a separate branch or tag in your version
control system.

Free and open source

Read the Docs is free and open source and hosts documentation for nearly 100,000 large and
small open source projects in almost every human and computer language;

First steps

Are you new to software documentation or are you looking to use your existing docs with Read the
Docs? Learn about documentation authoring tools such as Sphinx and MkDocs to help you create
fantastic documentation for your project.

« Getting started: |
« Importing your existing documentation

_static/screenshots/index/02.png
C @ 127.0.0.1:8000/builddir/

prjooz2

Navigation

Quick search

Go

Welcome to prjoo2’s
documentation!

Indices and tables

« Index
« Module Index
« Search Page

©2018, Mark P. Chen. | Powered by Sphinx 1.8.3

| sphinx002 — Python -m http.server — 113x16

(venv) MacAirmake:sphinx@02 pinglingchen$ python -m http.server

Serving

127.
127.
127.
127.
127.
127.
127.
127.
127.
127.
127.
127.
127.
127.

[SIS IR SIS BT B I S IS S
[SIS IR SIS BT B I S IS S
RPRPRRRPRRPRRRPRR

HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/)
11:21:43

28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018
28/Dec/2018

COOPOOOOO®®

code
"GET
"GET
"GET
"GET
"GET
"GET
"GET
"GET
"GET
"GET
"GET
"GET
"GET

404, message File not found

/livereload HTTP/1.1" 404 -

/ HTTP/1.1" 200 -

/_build/ HTTP/1.1" 200 -

/builddir/ HTTP/1.1" 200 -
/builddir/_static/alabaster.css HTTP/1.1" 200 -
/builddir/_static/pygments.css HTTP/1.1" 200 —
/builddir/_static/documentation_options.js HTTP/1.1" 200 -
/builddir/_static/jquery.js HTTP/1.1" 200 -
/builddir/_static/underscore.js HTTP/1.1" 200 -
/builddir/_static/doctools.js HTTP/1.1" 200 -
/builddir/_static/language_data.js HTTP/1.1" 200 -
/builddir/_static/custom.css HTTP/1.1" 200 -
/builddir/_static/basic.css HTTP/1.1" 200 -

