
Table Tennis Documentation
Release 1.0

itucsdb1519

Sep 27, 2017

Contents

1 User Guide 3

2 Developer Guide 29

i

ii

Table Tennis Documentation, Release 1.0

Team itucsdb1519

Members

• Hasan Burak Namlı

• Alican Mertan

• Fırat Bayram

• Ahmet Yılmaz

Table Tennis Database

Main purpose of table tennis page is keeping the record of the players, coaches, teams, tournaments, matches,
stadiums, referees and technic members. Site includes match statistics, player statistics. Through this page users
can reach the data about table tennis sport.

Contents:

Contents 1

Table Tennis Documentation, Release 1.0

2 Contents

CHAPTER 1

User Guide

This part explains how table tennis page works from user perspective

• Home Page is looking like this :

Fig. 1.1: Home Page

Initializing and uninitializing database can be implemented via ‘Initialize Database’ and ‘Uninitialize Database’
links. All of the pages can be reached via listed links

Parts Implemented by Hasan Burak NAMLI

Pages

1. Teams Page

2. Players Page

3

Table Tennis Documentation, Release 1.0

3. Technic Members Page

Teams Page

• In default teams page all teams are listed in the Teams Table Section

Fig. 1.2: Teams Table

• Above part of the page find operation can be applied by all attributes. Found teams are listed in the teams
table section. All teams showed when find operation made with all text boxes empty.

Fig. 1.3: Find Teams Section

Fig. 1.4: Sample find operation

• Delete operation can be done by selecting teams to be deleted and clicking the ‘click to delete selected
teams’ button

• Update operation can be done by selecting the team to update and entering the necessary attributes of that
team and clicking the ‘update’ button.

• Adding a new team can be done by entering the information of the team in text boxes and clicking the ‘add’
button.

4 Chapter 1. User Guide

Table Tennis Documentation, Release 1.0

Fig. 1.5: Sample deletion

Fig. 1.6: Update Teams operation

Fig. 1.7: Updated version

1.1. Parts Implemented by Hasan Burak NAMLI 5

Table Tennis Documentation, Release 1.0

Fig. 1.8: Adding new team operation

Fig. 1.9: New team added

Players Page

• Like in teams page all players are listed in the Players Table Section

• Above part of the page find operation can be applied by all attributes. Found players are listed in the players
table section. All players showed when find operation made with all text boxes empty.

• Delete operation can be done by selecting players to be deleted and clicking the ‘click to delete selected
players’ button

• Update operation can be done by selecting the player to update and entering the necessary attributes of that
player and clicking the ‘update’ button. Team attribute is selected from dropdown menu.

• Adding a new player can be done by entering the information of the player in text boxes, selecting the team
from dropdown menu and clicking the ‘add’ button.

Technic Members Page

• Like in teams and players page all technic members are listed.

6 Chapter 1. User Guide

Table Tennis Documentation, Release 1.0

Fig. 1.10: Players Table

Fig. 1.11: Find Players Section

Fig. 1.12: Sample deletion

1.1. Parts Implemented by Hasan Burak NAMLI 7

Table Tennis Documentation, Release 1.0

Fig. 1.13: Deleted version

Fig. 1.14: Update Player operation

Fig. 1.15: Updated version

Fig. 1.16: Adding new player operation

8 Chapter 1. User Guide

Table Tennis Documentation, Release 1.0

Fig. 1.17: New player added

Fig. 1.18: Technic Members Table

• Above part of the page find operation can be applied by all attributes. Found technic members are listed.
All technic members showed when find operation made with all text boxes empty.

Fig. 1.19: Find Technic Members Section

• Delete operation can be done by selecting technic members to be deleted and clicking the ‘delete’ button

• Update operation can be done by selecting the technic member to update and entering the necessary at-
tributes of that technic member and clicking the ‘update’ button. Coach attribute is selected from dropdown
menu.

• Adding a new technic member can be done by entering the information of the technic member in text boxes,
selecting the coach from dropdown menu and clicking the ‘add’ button.

1.1. Parts Implemented by Hasan Burak NAMLI 9

Table Tennis Documentation, Release 1.0

Fig. 1.20: Sample deletion

Fig. 1.21: Deleted version

Fig. 1.22: Update Technic Member operation

Fig. 1.23: Updated version

10 Chapter 1. User Guide

Table Tennis Documentation, Release 1.0

Fig. 1.24: Adding new technic member operation

Fig. 1.25: New technic member added

Parts Implemented by Alican Mertan

Pages

1. Tournaments Page

2. Matches Page

Tournaments Page

• In tournaments page all tournaments are listed in the Tournaments Section.

Fig. 1.26: Tournaments Table

• Adding a new tournament can be done by entering the information and clicking the ‘add’ button. Text boxes
are used to get the name and the year of the tournament and dropdown lists are used to select winner team
and the best player from existing ones.

1.2. Parts Implemented by Alican Mertan 11

Table Tennis Documentation, Release 1.0

Fig. 1.27: Adding new tournament

• Delete operation can be done by selecting tournaments to be deleted and clicking the ‘delete’ button.

Fig. 1.28: Sample deletion

• Search operation can be done in the ‘Search and Update’ section by entering the information and clicking
the ‘find’ button. If a search made with empty boxes, all the tupples will be shown.

Fig. 1.29: Search Operation

• After a search operation, update operation can be done within queried tupples. Update can be done by
changing the informations and clicking the related ‘update’ button.

Matches Page

• In matches page all matches are listed in the Matches Section.

12 Chapter 1. User Guide

Table Tennis Documentation, Release 1.0

Fig. 1.30: Update Operation

Fig. 1.31: Matches Table

• Adding a new match can be done by entering the information and clicking the ‘add’ button. Text boxes are
used to get the score of the match and dropdown lists are used to select tournament and teams from existing
ones.

Fig. 1.32: Adding new match

• Delete operation can be done by selecting matches to be deleted and clicking the ‘delete’ button.

• Search operation can be done in the ‘Search and Update’ section by entering the information and clicking
the ‘find’ button. If a search made with empty boxes, all the tupples will be shown.

• After a search operation, update operation can be done within queried tupples. Update can be done by
changing the informations and clicking the related ‘update’ button.

1.2. Parts Implemented by Alican Mertan 13

Table Tennis Documentation, Release 1.0

Fig. 1.33: Sample deletion

Fig. 1.34: Search Operation

Fig. 1.35: Update Operation

14 Chapter 1. User Guide

Table Tennis Documentation, Release 1.0

Parts Implemented by Ahmet Yılmaz

Pages

1. Coaches Page

2. Player Statistics Page

3. Users Page

Coaches Page

• Coaches listed in this page.

Fig. 1.36: Coaches Table

• Under the Search header in page there is textboxes for each attribute to find in database according to values
entered in checkboxes. Single attribute or more than one attribute can be used for searching.

Fig. 1.37: Find Coaches Section

Fig. 1.38: Sample find operation

• on the left side of table there is checkboxes for every tuple to request from HTML. Then requested tuples
can be deleted by clicking on delete button below.

• Update operation can be done by simply entering new value in textbox of which attribute preferred then
clicking on the Update button on the right. Team attribute selected from dropdown menu.

1.3. Parts Implemented by Ahmet Yılmaz 15

Table Tennis Documentation, Release 1.0

Fig. 1.39: Sample deletion

Fig. 1.40: Update Coaches operation

• Adding a new coach can be done by entering the information of the coach in text boxes and clicking the
‘add’ button. Team attribute selected from dropdown menu.

Player Statistics Page

• Player Statistics listed in the table section

• Under the Search header in page there is textboxes for each attribute to find in database according to values
entered in checkboxes. Single attribute or more than one attribute can be used for searching.

• On the left side of table there is checkboxes for every tuple to request from HTML. Then requested tuples
can be deleted by clicking on delete button below.

• Update operation can be done by simply entering new value in textbox of which attribute preferred then
clicking on the Update button on the right. Player selected from dropdown menu.

• Adding a new player can be done by entering the information of the player in text boxes, selecting the player
from dropdown menu and clicking the ‘add’ button.

Fig. 1.41: Updated version

16 Chapter 1. User Guide

Table Tennis Documentation, Release 1.0

Fig. 1.42: Adding new coach operation

Fig. 1.43: New coach added

Fig. 1.44: Player Statistics Table

Fig. 1.45: Find Player Section

Fig. 1.46: Sample deletion

1.3. Parts Implemented by Ahmet Yılmaz 17

Table Tennis Documentation, Release 1.0

Fig. 1.47: Deleted version

Fig. 1.48: Update Player operation

Fig. 1.49: Updated version

Fig. 1.50: Adding new player operation

Fig. 1.51: New player added

18 Chapter 1. User Guide

Table Tennis Documentation, Release 1.0

Users Page

• Users are listed.

Fig. 1.52: Users Table

• Users can be found according to username and password.

Fig. 1.53: Find Users Section

• Delete operation can be done by selecting user to be deleted and clicking the ‘delete’ button

Fig. 1.54: Sample deletion

• Update operation can be done by entering new values and clicking on update button.

• Adding a new user can be done by entering the information of the user in text boxes then clicking the ‘add’
button.

1.3. Parts Implemented by Ahmet Yılmaz 19

Table Tennis Documentation, Release 1.0

Fig. 1.55: Deleted version

Fig. 1.56: Update user operation

Fig. 1.57: Updated version

Fig. 1.58: Adding new user operation

Fig. 1.59: New user added

20 Chapter 1. User Guide

Table Tennis Documentation, Release 1.0

Parts Implemented by Fırat Bayram

Pages

1. Referees Page

2. Match Statistics Page

3. Stadiums Page

Referees Page

• Referees are listed in this page.

Fig. 1.60: Referees Table

• There is checkboxes for each attribute of referees table to find the entered value in checkboxes by searching
database. One or more attributes can be searched.

Fig. 1.61: Find Referees Section

Fig. 1.62: Sample find operation

• On the left side of each tuple a checkbox exists. With delete button below prefered tuple(referee) can be
deleted.

1.4. Parts Implemented by Fırat Bayram 21

Table Tennis Documentation, Release 1.0

Fig. 1.63: Sample deletion

• By entering new information about referee in textbox of chosen attribute and using update button on the
right side update operation can be succeed.

Fig. 1.64: Update Referee operation

Fig. 1.65: Updated Referee

• Entering the values of new referee, add operation can be done by using add button.

Stadiums Page

• Stadiums are listed in this section

• There is checkboxes for each attribute of stadiums table to find the entered value in checkboxes by searching
database. One or more attributes can be searched.

• On the left side of each tuple a checkbox exists. With delete button below prefered tuple(stadium) can be
deleted.

• By entering new information about stadium in textbox of chosen attribute and using update button on the
right side update operation can be succeed. Country information can be selected from dropdown menu.

22 Chapter 1. User Guide

Table Tennis Documentation, Release 1.0

Fig. 1.66: Adding new referee operation

Fig. 1.67: New referee added

Fig. 1.68: Stadiums Table

Fig. 1.69: Find Stadium

Fig. 1.70: Find Stadium

1.4. Parts Implemented by Fırat Bayram 23

Table Tennis Documentation, Release 1.0

Fig. 1.71: Sample deletion

Fig. 1.72: Deleted Version

Fig. 1.73: Update Stadium

Fig. 1.74: Updated Stadium

24 Chapter 1. User Guide

Table Tennis Documentation, Release 1.0

• Entering the values of new stadium, add operation can be done by using add button. Country information
can be selected from dropdown menu.

Fig. 1.75: Add Stadium

Fig. 1.76: New stadium added

Match Statistics Page

• Match Statistics are listed.

Fig. 1.77: Match Statistics Table

• There is checkboxes for each attribute of match statistics table to find the entered value in checkboxes by
searching in database. One or more attributes can be searched.

• On the left side of each tuple a checkbox exists. With delete button below prefered tuple(match statistics)
can be deleted.

• By entering new information about match statistics in textbox of chosen attribute and using update button
on the right side update operation can be succeed.Current Home Team Current Away Team and Current
Referee can be selected from dropdown menu.

1.4. Parts Implemented by Fırat Bayram 25

Table Tennis Documentation, Release 1.0

Fig. 1.78: Find Match Statistics

Fig. 1.79: Sample deletion

Fig. 1.80: Deleted version

Fig. 1.81: Update match statistics

Fig. 1.82: Updated match statistics

26 Chapter 1. User Guide

Table Tennis Documentation, Release 1.0

• Entering the values of new match statistics, add operation can be done by using add button. Home Team
and Away Team can be selected from dropdown menu.

Fig. 1.83: Add match statistics

Fig. 1.84: New match statistics added

1.4. Parts Implemented by Fırat Bayram 27

Table Tennis Documentation, Release 1.0

28 Chapter 1. User Guide

CHAPTER 2

Developer Guide

Database Design

• E/R Diagram of table tennis database:

Code

Parts Implemented by Hasan Burak NAMLI

Database Design

1 Tables

1.1 Teams Table

• Teams table keeping record of the teams data

Name Type Not Null Primary K.
ID INTEGER 0 1
NATION VARCHAR 0 0
GENDER VARCHAR 0 0
FOUNDDATE VARCHAR 0 0
TIMESWON VARCHAR 0 0

• nation keeps the record of nation of the given team.

• gender keeps the record of gender of the given team.

• founddate keeps the record of the found date of the given team.

• timeswon keeps the record of how many times team has won the game.

Sql statement that initialize the teams table:

29

Table Tennis Documentation, Release 1.0

Fig. 2.1: E/R Diagram

30 Chapter 2. Developer Guide

Table Tennis Documentation, Release 1.0

CREATE TABLE TEAMS (
ID SERIAL PRIMARY KEY,
NATION VARCHAR(45),
GENDER VARCHAR(6),
FOUNDDATE VARCHAR(20),
TIMESWON VARCHAR(10)
)

1.2 Players Table

• Players table keeping record of the players data

Name Type Not Null Primary K.
ID INTEGER 0 1
NAME VARCHAR 0 0
GENDER VARCHAR 0 0
NATION VARCHAR 0 0
BIRTHDATE VARCHAR 0 0
TEAM INTEGER 0 0

• name keeps the record of name of the given player.

• gender keeps the record of gender of the given player.

• nation keeps the record of nation of the given player.

• birthdate keeps the record of birth date of the given player.

• team references to teams table and on delete and update operations it cascades the operation

Sql statement that initialize the players table:

CREATE TABLE PLAYERS (
ID SERIAL PRIMARY KEY,
NAME VARCHAR(45),
GENDER VARCHAR(6),
NATION VARCHAR(45),
BIRTHDATE VARCHAR(10),
TEAM INTEGER REFERENCES TEAMS ON DELETE CASCADE ON UPDATE CASCADE
)

1.3 Technic Members Table

• Technic members table keeping record of the technic members data

Name Type Not Null Primary K.
ID INTEGER 0 1
NAME VARCHAR 0 0
GENDER VARCHAR 0 0
NATION VARCHAR 0 0
BIRTHDATE VARCHAR 0 0
COACH INTEGER 0 0

• name keeps the record of name of the given technic member.

• gender keeps the record of gender of the given technic member.

• nation keeps the record of nation of the given technic member.

• birthdate keeps the record of birth date of the given technic member.

• coach references to coach table and on delete and update operations it cascades the operation

2.2. Code 31

Table Tennis Documentation, Release 1.0

Sql statement that initialize the technic members table:

CREATE TABLE TECHNICMEMBERS (
ID SERIAL PRIMARY KEY,
NAME VARCHAR(45),
GENDER VARCHAR(6),
NATION VARCHAR(45),
BIRTHDATE VARCHAR(10),
COACH INTEGER REFERENCES COACHES ON DELETE CASCADE ON UPDATE

→˓CASCADE
)

Code

1 MVC and team, player,tm classes

MVC pattern tried to use in the implementation of teams, players and technic members tables in web application.
For all tables classes implemented. Instances of those classes keep the data of one tuple. Objects are implemented
via html sending parameters and objects are sending to the functions of store classes and table classes’ attributes
implement the database tables via store classes’ functions.

1.1 class team

• Teams table class :

class team:
def __init__(self, nation, gender, foundDate, timesWon):

self.nation = nation
self.gender = gender
self.foundDate = foundDate
self.timesWon = timesWon

1.2 class player

• Players table class :

class player:
def __init__(self, name, gender, nation, birthDate, team):

self.name = name
self.gender = gender
self.nation = nation
self.birthDate = birthDate
self.team = team

1.3 class tm

• Technic members table class :

class tm:
def __init__(self, name, gender, nation, birthDate, coach):

self.name = name
self.gender = gender
self.nation = nation
self.birthDate = birthDate
self.coach = coach

32 Chapter 2. Developer Guide

Table Tennis Documentation, Release 1.0

2 Store classes

2.1 store.py

Store classes is implemented in store.py file. In store classes database is handling via some functions. Beginning
of store.py is like this:

import psycopg2 as dbapi2

from technicmember import tm
from player import player
from team import team

from config import app

It imports psycopg2 editor as a dbapi2 for using as database api. Classes tm, player and team also imported. From
config.py file it imports app object. In config.py file app object implemented in this way:

from flask import Flask

app = Flask(__name__)

app.debug = True

2.2 class StoreTeam

• class StoreTeam init function and createTable function is implemented like this:

class StoreTeam:
def __init__(self, dbSettings):

self.dsn = dbSettings

def createTable(self, dsn):
try:

connection = dbapi2.connect(dsn)
cursor = connection.cursor()
statement = """ CREATE TABLE TEAMS (
ID SERIAL PRIMARY KEY,
NATION VARCHAR(45),
GENDER VARCHAR(6),
FOUNDDATE VARCHAR(20),
TIMESWON VARCHAR(10)
)"""
cursor.execute(statement)
connection.commit()
cursor.close()

except dbapi2.DatabaseError:
connection.rollback()

finally:
connection.close()

createTable() function makes the connection with database via dbapi2 database api. cursor variable created as
a cursor of connection and statement variable keeps the statement of SQL for creating table in database. After
cursor execution and connection committing try, except and finally block handles the exceptions. If any error
occurs connection rollback else connection closes.

all functions which needs to handle some operations on database uses the with .. as context manager of psycopg2

• addTeam() function of class StoreTeam:

2.2. Code 33

Table Tennis Documentation, Release 1.0

def addTeam(self, team, dsn):
with dbapi2.connect(dsn) as connection:

with connection.cursor() as cursor:
cursor.execute("INSERT INTO TEAMS (NATION, GENDER, FOUNDDATE,

→˓ TIMESWON) VALUES(%s, %s, %s, %s)", (team.nation, team.gender, team.
→˓foundDate, team.timesWon))

This function gets a team object from teams.py file html-side function. It adds the team object as a tuple into the
database. It executes the SQL statement into the database.

• deleteTeam() function of class StoreTeam:

def deleteTeam(self, id, dsn):
with dbapi2.connect(dsn) as connection:

with connection.cursor() as cursor:
query = """ DELETE FROM TEAMS WHERE ID = {}""".format(id)
cursor.execute(query)

This function gets the id of the tuple to be deleted. It deletes the tuple from the database.

• updateTeam() function of class StoreTeam:

def updateTeam(self, team, id, dsn):
with dbapi2.connect(dsn) as connection:

with connection.cursor() as cursor:
query = """UPDATE TEAMS SET NATION = '{}', GENDER = '{}',

→˓FOUNDDATE = '{}', TIMESWON = '{}' WHERE ID = {} """.format(team.
→˓nation, team.gender, team.foundDate, team.timesWon, id)

cursor.execute(query)

This function gets the id of the tuple to be updated. It reaches the tuple with its’ id and update the tuple with the
team object which it gets.

• getAllTeams() function of class StoreTeam:

def getAllTeams(self, dsn):
with dbapi2.connect(dsn) as connection:

with connection.cursor() as cursor:
query = """ SELECT * FROM TEAMS """
cursor.execute(query)
teams = cursor.fetchall()
return teams

This function select all teams and return all teams as an array.

• selectTeams() function of class StoreTeam:

def selectTeams(self, team, dsn):
with dbapi2.connect(dsn) as connection:

with connection.cursor() as cursor:
query = """SELECT * FROM TEAMS WHERE(NATION LIKE '{}%')

→˓AND (GENDER LIKE '{}%') AND (FOUNDDATE LIKE '{}%') AND (TIMESWON
→˓LIKE '{}%')""".format(team.nation, team.gender, team.foundDate,
→˓team.timesWon)

cursor.execute(query)
teams = cursor.fetchall()
return teams

This function select teams with a specific search. It returns the team table tuples which it found as an array.

• createInitTeams() function of class StoreTeam:

def createInitTeams(self, dsn):
app.storeT = StoreTeam(app.config['dsn'])

34 Chapter 2. Developer Guide

Table Tennis Documentation, Release 1.0

newTeam = team('Turkey', 'Male', '1920', '4')
app.storeT.addTeam(newTeam, dsn)
newTeam2 = team('England', 'Male', '1936', '3')
app.storeT.addTeam(newTeam2, dsn)
newTeam3 = team('China', 'Male', '1906','5')
app.storeT.addTeam(newTeam3, dsn)
newTeam4 = team('Russia', 'Female', '1943','1')
app.storeT.addTeam(newTeam4, dsn)

This function creates initial elements when database has initialized. It uses add function to create initial tuples.

2.2 class StoreP

• class StoreP init function and createTable() function:

def __init__(self, dbSettings):
self.dsn = dbSettings

def createTable(self, dsn):
try:

connection = dbapi2.connect(dsn)
cursor = connection.cursor()
statement = """ CREATE TABLE PLAYERS (
ID SERIAL PRIMARY KEY,
NAME VARCHAR(45),
GENDER VARCHAR(6),
NATION VARCHAR(45),
BIRTHDATE VARCHAR(10),
TEAM INTEGER REFERENCES TEAMS ON DELETE CASCADE ON UPDATE CASCADE
)"""
cursor.execute(statement)
connection.commit()
cursor.close()

except dbapi2.DatabaseError:
connection.rollback()

finally:
connection.close()

createTable() function works like StoreTeam class’ createTable() function.

Also in StoreP functions with .. as context manager of psycopg2 has used.

• addPlayer() function of class StoreP:

def addPlayer(self, player, dsn):
with dbapi2.connect(dsn) as connection:

with connection.cursor() as cursor:
cursor.execute("INSERT INTO PLAYERS (NAME, GENDER, NATION,

→˓BIRTHDATE, TEAM) VALUES(%s, %s, %s, %s, %s)", (player.name, player.
→˓gender, player.nation, player.birthDate, player.team))

This function works as same as addTeam function of StoreTeam.

• deletePlayer() function of class StoreP:

def deletePlayer(self, id, dsn):
with dbapi2.connect(dsn) as connection:

with connection.cursor() as cursor:
query = """ DELETE FROM PLAYERS WHERE ID = {}""".format(id)
cursor.execute(query)

2.2. Code 35

Table Tennis Documentation, Release 1.0

This function works as same as deleteTeam function of StoreTeam.

• updatePlayer() function of class StoreP:

def updatePlayer(self, player, id, dsn):
with dbapi2.connect(dsn) as connection:

with connection.cursor() as cursor:
query = """UPDATE PLAYERS SET NAME = '{}', GENDER = '{}',

→˓NATION = '{}', BIRTHDATE = '{}', TEAM = '{}' WHERE ID = {} """.
→˓format(player.name, player.gender, player.nation, player.birthDate,
→˓player.team, id)

cursor.execute(query)

This function also works as same as updateTeam function of StoreTeam.

• getAllPlayers() function of class StoreP:

def getAllPlayers (self, dsn):
with dbapi2.connect(dsn) as connection:

with connection.cursor() as cursor:
query = """ SELECT PLAYERS.ID, PLAYERS.NAME, PLAYERS.GENDER,

→˓PLAYERS.NATION, PLAYERS.BIRTHDATE, TEAMS.NATION FROM PLAYERS INNER
→˓JOIN TEAMS ON TEAMS.ID = PLAYERS.TEAM """

cursor.execute(query)
players = cursor.fetchall()
return players

This function also works as same as getAllTeams() function of StoreTeam.

• selectPlayers() function of class StoreP:

def selectPlayers(self, player, dsn):
with dbapi2.connect(dsn) as connection:

with connection.cursor() as cursor:
query = """SELECT PLAYERS.ID, PLAYERS.NAME, PLAYERS.GENDER,

→˓PLAYERS.NATION, PLAYERS.BIRTHDATE, TEAMS.NATION
FROM PLAYERS INNER JOIN TEAMS ON TEAMS.ID = PLAYERS.TEAM
WHERE(PLAYERS.NAME LIKE '{}%') AND (PLAYERS.GENDER LIKE '{}

→˓%') AND
(PLAYERS.NATION LIKE '{}%') AND (PLAYERS.BIRTHDATE LIKE '{}%

→˓') AND
(TEAMS.NATION LIKE '{}%') """.format(player.name, player.

→˓gender, player.nation, player.birthDate, player.team)
cursor.execute(query)
players = cursor.fetchall()
return players

This function also select players with a specific search. The SQL statement joins the teams and players tables and
searches what to search in joined tables. After that it returns the players table tuples which it found as an array.

• createInitPlayers() function of class StoreP:

def createInitPlayers(self,dsn):
app.store = StoreP(app.config['dsn'])

newPlayer = player('Hasan', 'Male', 'Turkish', '1994', 1)
app.store.addPlayer(newPlayer, dsn)
newPlayer2 = player('Rose', 'Female', 'English', '1995', 2)
app.store.addPlayer(newPlayer2, dsn)
newPlayer3 = player('Dimitrov', 'Male', 'Russian', '1993', 4)
app.store.addPlayer(newPlayer3, dsn)

This function creates initial elements when database has initialized. It uses add function to create initial tuples.

36 Chapter 2. Developer Guide

Table Tennis Documentation, Release 1.0

2.3 class StoreTM

• class StoreTM init function and createTable() function:

def __init__(self, dbSettings):
self.dsn = dbSettings

def createTable(self, dsn):
try:

connection = dbapi2.connect(dsn)
cursor = connection.cursor()
statement = """ CREATE TABLE TECHNICMEMBERS (
ID SERIAL PRIMARY KEY,
NAME VARCHAR(45),
GENDER VARCHAR(6),
NATION VARCHAR(45),
BIRTHDATE VARCHAR(10),
COACH INTEGER REFERENCES COACHES ON DELETE CASCADE ON UPDATE

→˓CASCADE
)"""
cursor.execute(statement)
connection.commit()
cursor.close()

except dbapi2.DatabaseError:
connection.rollback()

finally:
connection.close()

createTable() function works like StoreTeam class’ createTable() function.

Also in StoreTM functions with .. as context manager of psycopg2 has used.

• addTm() function of class StoreTM:

def addTm(self, tm, dsn):
with dbapi2.connect(dsn) as connection:

with connection.cursor() as cursor:
cursor.execute("INSERT INTO TECHNICMEMBERS (NAME, GENDER,

→˓NATION, BIRTHDATE, COACH) VALUES(%s, %s, %s, %s, %s)", (tm.name, tm.
→˓gender, tm.nation, tm.birthDate, tm.coach))

This function works as same as addTeam function of StoreTeam.

• deleteTm() function of class StoreTM:

def deleteTm(self, id, dsn):
with dbapi2.connect(dsn) as connection:

with connection.cursor() as cursor:
query = """ DELETE FROM TECHNICMEMBERS WHERE ID = {}""".

→˓format(id)
cursor.execute(query)

This function works as same as deleteTeam function of StoreTeam.

• updateTm() function of class StoreTM:

def updateTm(self, tm, id, dsn):
with dbapi2.connect(dsn) as connection:

with connection.cursor() as cursor:
query = """UPDATE TECHNICMEMBERS SET NAME= '{}', GENDER = '{}

→˓', NATION = '{}', BIRTHDATE = '{}', COACH = '{}' WHERE ID = {} """.
→˓format(tm.name, tm.gender, tm.nation, tm.birthDate, tm.coach, id)

cursor.execute(query)

2.2. Code 37

Table Tennis Documentation, Release 1.0

This function also works as same as updateTeam function of StoreTeam.

• getAllTms() function of class StoreTM:

def getAllTms (self, dsn):
with dbapi2.connect(dsn) as connection:

with connection.cursor() as cursor:
query = """ SELECT TECHNICMEMBERS.ID, TECHNICMEMBERS.NAME,

→˓TECHNICMEMBERS.GENDER, TECHNICMEMBERS.NATION, TECHNICMEMBERS.
→˓BIRTHDATE, COACHES.NAME FROM TECHNICMEMBERS INNER JOIN COACHES ON
→˓COACHES.ID = TECHNICMEMBERS.COACH """

cursor.execute(query)
tms = cursor.fetchall()
return tms

This function also works as same as getAllTeams() function of StoreTeam.

• selectTms() function of class StoreTM:

def selectTms(self, tm, dsn):
with dbapi2.connect(dsn) as connection:

with connection.cursor() as cursor:
query = """SELECT TECHNICMEMBERS.ID, TECHNICMEMBERS.NAME,

→˓TECHNICMEMBERS.GENDER, TECHNICMEMBERS.NATION, TECHNICMEMBERS.
→˓BIRTHDATE, COACHES.NAME

FROM TECHNICMEMBERS INNER JOIN COACHES ON COACHES.ID =
→˓TECHNICMEMBERS.COACH

WHERE(TECHNICMEMBERS.NAME LIKE '{}%') AND (TECHNICMEMBERS.
→˓GENDER LIKE '{}%') AND

(TECHNICMEMBERS.NATION LIKE '{}%') AND (TECHNICMEMBERS.
→˓BIRTHDATE LIKE '{}%') AND

(COACHES.NAME LIKE '{}%') """.format(tm.name, tm.gender, tm.
→˓nation, tm.birthDate, tm.coach)

cursor.execute(query)
tms = cursor.fetchall()
return tms

This function also select players with a specific search. The SQL statement joins the technicmembers and coaches
tables and searches what to search in joined tables. After that it returns the technicmembers table tuples which it
found as an array.

• createInitTMs() function of class StoreTM:

def createInitTMs(self, dsn):
app.storeT = StoreTM(app.config['dsn'])

newTm = tm('Veli', 'Male', 'Turkish', '1978', 1)
app.storeT.addTm(newTm, dsn)
newTm = tm('Ayşe', 'Female', 'Turkish', '1978', 1)
app.storeT.addTm(newTm, dsn)
newTm = tm('Jane', 'Female', 'English', '1982', 2)
app.storeT.addTm(newTm, dsn)

This function creates initial elements when database has initialized. It uses add function to create initial tuples.

3 HTML handling .pys

3.1 teams.py

• Import part of the teams.py file

38 Chapter 2. Developer Guide

Table Tennis Documentation, Release 1.0

from flask import redirect
from flask import render_template
from flask import request
from flask import url_for

from config import app
from team import team
from store import StoreTeam
import psycopg2 as dbapi2

redirect, render_template, request and url_for features of Flask web framework have used. Like in store classes
app object of Flask has imported from config. team class has imported. StoreTeam class has imported from store
file. pyscopg2 has imported as a dbapi2 for use as a database api.

• teams function for rendering teams.html file

@app.route('/teams', methods = ['GET', 'POST'])
def teams():

dsn = app.config['dsn']

app.store = StoreTeam(dsn)

if request.method == 'GET':
allTeams = app.store.getAllTeams(dsn)

This part of teams function renders the url ‘/teams’ with teams.html file. Uses ‘GET’ and ‘POST’ methods. Uses
dsn as a database settings which is implementing in config.py whether ElephantSQL or Vagrant database system.
app.store variable assigned to a StoreTeam object. All StoreTeam object methods can be used via app.store
variable. If request.method equals to ‘GET’ method getAllTeams function of StoreTeam object has invoked and
gets all teams as and array and passed them to html file. After all operations allTeams variable assigned to an array
which holds all the teams data. At the end of the function allTeams variable send to html file for listing.

• delete method

elif 'delete' in request.form:
ids = request.form.getlist('teams')
for id in ids:

app.store.deleteTeam(id, dsn)
allTeams = app.store.getAllTeams(dsn)

If request method from user is delete this part of teams function has invoked. It gets the clicked checkbox ids and
passed that ids one by one to the deleteTeam() function of StoreTeam class. After that tuples get deleted.

• add method

elif 'add' in request.form:
nation = request.form['nationToAdd']
gender = request.form['genderToAdd']
foundDate = request.form['foundDateToAdd']
timesWon = request.form['timesWonToAdd']
newTeam = team(nation, gender, foundDate, timesWon)
app.store.addTeam(newTeam, dsn)
allTeams = app.store.getAllTeams(dsn)

If request method from user is add this part of teams function has invoked. Datas in the add textboxes has passed as
a attributes of a team object and addTeam function of StoreTeam class added the tuple using team object attributes
as a tuple attributes.

• update method

2.2. Code 39

Table Tennis Documentation, Release 1.0

elif 'update' in request.form:
ids = request.form.getlist('teams')
id = ids[0]
nation = request.form['nationToUpdate']
gender = request.form['genderToUpdate']
foundDate = request.form['foundDateToUpdate']
timesWon = request.form['timesWonToUpdate']
updatedTeam = team(nation, gender, foundDate, timesWon)
app.store.updateTeam(updatedTeam, id, dsn)
allTeams = app.store.getAllTeams(dsn)

If request method from user is update this part of teams function has invoked. Datas in update textboxes has
passed as a attributes of a team object and id of the tuple that needs to be update. After that updateTeam function
StoreTeam class updated the necessary tuple using team object attributes as a tuple attributes.

• find method

elif 'find' in request.form:
nation = request.form['nationToFind']
gender = request.form['genderToFind']
foundDate = request.form['foundDateToFind']
timesWon = request.form['timesWonToFind']
findTeam = team(nation, gender, foundDate, timesWon)
allTeams = app.store.selectTeams(findTeam, dsn)

return render_template('teams.html', teams = allTeams)

Finally if request method from user is find this part of teams function has invoked. Datas in find textboxes has
passed as a attributes of a team object and selectTeams function of StoreTeam find the searched datas with SQL
operation in the database and returns an array of teams that found.

At the end of function teams.html file rendered with this python code and allTeams attribute passed to html file to
be listed.

3.2 players.py

• Import part of the players.py file

from flask import redirect
from flask import render_template
from flask import request
from flask import url_for

from config import app
from player import player
from store import StoreP
from store import StoreTeam
import psycopg2 as dbapi2

Like in teams.py file necessary imports for Flask web framework use has implemented. player class has imported.
Both StoreP and StoreTeam classes has imported because of the team foreign key in the players table. After all
operations allPlayers variable assigned to an array which holds allPlayers data as well. At the end of the function
allPlayers variable send to html file for listing and also allTeams variable too.

• players function for rendering players.html file

@app.route('/players', methods = ['GET', 'POST'])
def players():

dsn = app.config['dsn']

40 Chapter 2. Developer Guide

Table Tennis Documentation, Release 1.0

app.store = StoreP(dsn)

app.storeT = StoreTeam(dsn)
allTeams = app.storeT.getAllTeams(dsn)

if request.method == 'GET':
allPlayers = app.store.getAllPlayers(dsn)

This part of players function works as same as teams function in teams.py file. With a little difference it has
another app.storeT variable for using StoreTeam class for getting all teams for foreign key of players table team
attribute.

• delete method

elif 'delete' in request.form:
ids = request.form.getlist('players')
for id in ids:

app.store.deletePlayer(id, dsn)
allPlayers = app.store.getAllPlayers(dsn)

This part of players function works as same as teams function of teams.py file.

• add method

elif 'add' in request.form:
name = request.form['nameToAdd']
gender = request.form['genderToAdd']
nation = request.form['nationToAdd']
birthDate = request.form['birthDateToAdd']
team = request.form['teamToAdd']
newPlayer = player(name, gender, nation, birthDate, team)
app.store.addPlayer(newPlayer, dsn)
allPlayers = app.store.getAllPlayers(dsn)

This part of players function also works as same as teams function of teams.py file.

• update method

elif 'update' in request.form:
ids = request.form.getlist('players')
id = ids[0]
name = request.form['nameToUpdate']
gender = request.form['genderToUpdate']
nation = request.form['nationToUpdate']
birthDate = request.form['birthDateToUpdate']
team = request.form['teamToUpdate']
updatedPlayer = player(name, gender, nation, birthDate, team)
app.store.updatePlayer(updatedPlayer, id, dsn)
allPlayers = app.store.getAllPlayers(dsn)

Also this part of players function works as same as teams function in teams.py

• find method

elif 'find' in request.form:
name = request.form['nameToFind']
gender = request.form['genderToFind']
nation = request.form['nationToFind']
birthDate = request.form['birthDateToFind']
team = request.form['teamToFind']
findPlayer = player(name, gender, nation, birthDate, team)
allPlayers = app.store.selectPlayers(findPlayer, dsn)

2.2. Code 41

Table Tennis Documentation, Release 1.0

return render_template('players.html', players = allPlayers, teams =
→˓allTeams)

Final part is also same as teams function in teams.py file.

At the end of function players.html file rendered with this python code and allPlayers and allTeams attribute passed
to html file to be listed.

3.3 technicmembers.py

• Import part of the technicmembers.py file

from flask import redirect
from flask import render_template
from flask import request
from flask import url_for

from config import app
from technicmember import tm
from store import StoreTM
import psycopg2 as dbapi2

import coaches

Like in teams.py file necessary imports for Flask web framework use has implemented. tm class has imported.
StoreTM class has imported and also coaches has imported because of the coach foreign key in the technicmem-
bers table. After all operations allTms variable assigned to an array which holds allTms data as well. At the end
of the function allTms variable send to html file for listing and also allCoaches variable too.

• technicmembers function for rendering technicMembers.html file

@app.route('/technicMembers', methods = ['GET', 'POST'])
def technicMembers():

dsn = app.config['dsn']

app.store = StoreTM(dsn)

allCoaches = coaches.get_coaches()

if request.method == 'GET':
allTms = app.store.getAllTms(dsn)

This part of technicmembers function works as same as teams function in teams.py file. With a little difference
it has allCoaches variable for using getting all coaches from coaches file with coaches.get_coaches function for
foreign key of technicmembers table coach attribute.

• delete method

elif 'delete' in request.form:
ids = request.form.getlist('tms')
for id in ids:

app.store.deleteTm(id, dsn)
allTms = app.store.getAllTms(dsn)

This part of technicmembers function works as same as teams function of teams.py file.

• add method

elif 'add' in request.form:
name = request.form['nameToAdd']

42 Chapter 2. Developer Guide

Table Tennis Documentation, Release 1.0

gender = request.form['genderToAdd']
nation = request.form['nationToAdd']
birthDate = request.form['birthDateToAdd']
coach = request.form['coachToAdd']
newTm = tm(name, gender, nation, birthDate, coach)
app.store.addTm(newTm, dsn)
allTms = app.store.getAllTms(dsn)

This part of technicmembers function also works as same as teams function of teams.py file.

• update method

elif 'update' in request.form:
ids = request.form.getlist('tms')
id = ids[0]
name = request.form['nameToUpdate']
gender = request.form['genderToUpdate']
nation = request.form['nationToUpdate']
birthDate = request.form['birthDateToUpdate']
coach = request.form['coachToUpdate']
newTm = tm(name, gender, nation, birthDate, coach)
app.store.updateTm(newTm, id, dsn)
allTms = app.store.getAllTms(dsn)

Also this part of technicmembers function works as same as teams function in teams.py

• find method

elif 'find' in request.form:
name = request.form['nameToFind']
gender = request.form['genderToFind']
nation = request.form['nationToFind']
birthDate = request.form['birthDateToFind']
coach = request.form['coachToFind']
findTm = tm(name, gender, nation, birthDate, coach)
allTms = app.store.selectTms(findTm, dsn)

return render_template('technicMembers.html', tms = allTms, coaches =
→˓allCoaches)

Final part is also same as teams function in teams.py file.

At the end of function technicMembers.html file rendered with this python code and allTms and allCoaches
attribute passed to html file to be listed.

Parts Implemented by Alican MERTAN

Database Design

1 Tables

1.1 Tournaments Table

• Tournaments table keeping records of the tournaments data

2.2. Code 43

Table Tennis Documentation, Release 1.0

Name Type
ID INTEGER
NAME VARCHAR
YEAR VARCHAR
WINNER INTEGER
BEST_PLAYER INTEGER

• name keeps the record of name of the given tournament.

• year keeps the record of year of the given tournament.

• winner keeps the record of the winner of the given tournament. It references the teams table.

• best_player keeps the record of the best player of the given tournament. It references the players table.

Sql statement that initialize the tournaments table:

CREATE TABLE TOURNAMENTS(
ID SERIAL PRIMARY KEY,
NAME VARCHAR(45),
YEAR VARCHAR(4),
WINNER INTEGER REFERENCES TEAMS ON DELETE CASCADE ON UPDATE CASCADE,
BEST_PLAYER INTEGER REFERENCES PLAYERS ON DELETE CASCADE ON UPDATE

→˓CASCADE
)

1.2 Matches Table

• Matches table keeping records of the matches data

Name Type
ID INTEGER
TOURNAMENT INTEGER
TEAM1 INTEGER
TEAM2 INTEGER
SCORE VARCHAR

• tournament keeps the record of name of the tournament for given match. It references the tournaments
table.

• team1 keeps the record of name of the team for given match. It references the teams table.

• team2 keeps the record of name of the team for given match. It references the teams table.

• score keeps the record of the score of the given match.

Sql statement that initialize the matches table:

CREATE TABLE MATCHES(
ID SERIAL PRIMARY KEY,
TOURNAMENT INTEGER REFERENCES TOURNAMENTS ON DELETE CASCADE ON UPDATE

→˓CASCADE,
TEAM1 INTEGER REFERENCES TEAMS ON DELETE CASCADE ON UPDATE CASCADE,
TEAM2 INTEGER REFERENCES TEAMS ON DELETE CASCADE ON UPDATE CASCADE,
SCORE VARCHAR(3)
)

Code

1 Functions

44 Chapter 2. Developer Guide

Table Tennis Documentation, Release 1.0

1.1 creating tables

create_table functions used in order to create tables.

• create_table function in tournaments.py:

def create_table():
try:

cursor = create_connection()
statement = """ CREATE TABLE TOURNAMENTS(
ID SERIAL PRIMARY KEY,
NAME VARCHAR(45),
YEAR VARCHAR(4),
WINNER INTEGER REFERENCES TEAMS ON DELETE CASCADE ON UPDATE

→˓CASCADE,
BEST_PLAYER INTEGER REFERENCES PLAYERS ON DELETE CASCADE ON

→˓UPDATE CASCADE
)"""
cursor.execute(statement)
cursor.connection.commit()
close_connection(cursor)

except psycopg2.DatabaseError:
cursor.connection.rollback()

finally:
cursor.connection.close()

• create_table function in matches.py:

def create_table():
try:

cursor = create_connection()
statement = """ CREATE TABLE MATCHES(
ID SERIAL PRIMARY KEY,
TOURNAMENT INTEGER REFERENCES TOURNAMENTS ON DELETE CASCADE ON

→˓UPDATE CASCADE,
TEAM1 INTEGER REFERENCES TEAMS ON DELETE CASCADE ON UPDATE

→˓CASCADE,
TEAM2 INTEGER REFERENCES TEAMS ON DELETE CASCADE ON UPDATE

→˓CASCADE,
SCORE VARCHAR(3)
)"""
cursor.execute(statement)
cursor.connection.commit()
close_connection(cursor)

except psycopg2.DatabaseError:
cursor.connection.rollback()

finally:
cursor.connection.close()

1.2 initiliazing database

create_init functions used in order to initiliaze database with some tupples.

• create_init_tournaments function in tournaments.py:

def create_init_tournaments():

add_new_tournament('World Cup', '2015', 1, 1)
add_new_tournament('World Cup', '2014', 2, 3)
add_new_tournament('World Cup', '2013', 3, 2)

• create_init_matches function in matches.py:

2.2. Code 45

Table Tennis Documentation, Release 1.0

def create_init_matches():

add_new_match(1, 1, 2, '5-3')
add_new_match(1, 3, 4, '4-2')
add_new_match(1, 3, 2, '2-6')

1.3 adding new tupples

add_new functions used in order to add new tupples to a table. Function gets attribute values as a parameter.

• add_new_tournament function in tournaments.py:

def add_new_tournament(name, year, winner, best_player):
cursor = create_connection()

cursor.execute("INSERT INTO tournaments (name, year, winner, best_
→˓player) VALUES (%s, %s, %s, %s)", (name, year, winner, best_player))
cursor.connection.commit()

close_connection(cursor)

return True

• add_new_match function in matches.py:

def add_new_match(tournament, team1, team2, score):
cursor = create_connection()

cursor.execute("INSERT INTO matches (tournament, team1, team2,
→˓score) VALUES (%s, %s, %s, %s)", (tournament, team1, team2, score))

cursor.connection.commit()

close_connection(cursor)

return True

1.4 deleting tupples

delete functions used in order to delete tupples. Function takes primary key value as a parameter.

• delete_tournament function in tournaments.py:

def delete_tournament(id):
cursor = create_connection()
statement = """DELETE FROM TOURNAMENTS WHERE ID={}""".format(id)
cursor.execute(statement)
cursor.connection.commit()

close_connection(cursor)

• delete_match function in matches.py:

def delete_match(id):
cursor = create_connection()
statement = """DELETE FROM MATCHES WHERE ID={}""".format(id)
cursor.execute(statement)
cursor.connection.commit()

close_connection(cursor)

46 Chapter 2. Developer Guide

Table Tennis Documentation, Release 1.0

1.5 updating tupples

update functions used in order to update selected tupples. Function takes primary key as a parameter to find
selected tupple and takes attributes values as a paramater to update tupple.

• update_tournament function in tournaments.py:

def update_tournament(id, nameUpdate, yearUpdate, winnerUpdate, best_playerUpdate):
cursor = create_connection()
statement = """UPDATE TOURNAMENTS SET NAME = '{}', YEAR = '{}', WINNER = '{}',
→˓BEST_PLAYER = {} WHERE ID={} """.format(nameUpdate, yearUpdate, winnerUpdate,
→˓best_playerUpdate, id)
cursor.execute(statement)
cursor.connection.commit()

close_connection(cursor)

• update_match function in matches.py:

def update_match(id, tournamentUpdate, team1Update, team2Update, scoreUpdate):
cursor = create_connection()
statement = """UPDATE MATCHES SET TOURNAMENT = '{}', TEAM1 = '{}', TEAM2 = '{}',
→˓SCORE = '{}' WHERE ID={} """.format(tournamentUpdate, team1Update, team2Update,
→˓scoreUpdate, id)
cursor.execute(statement)
cursor.connection.commit()

close_connection(cursor)

1.6 finding tupples

findInJointTables functions used in order to query tupples. Function takes attribute values as a parameter and
returns tupples as an array. If an empty search made, all the tupples will be returned.

• findInJointTables function in tournaments.py:

def findInJointTables(nameFind, yearFind, winnerFind, best_playerFind):
statement= """ SELECT TOURNAMENTS.ID, TOURNAMENTS.NAME, YEAR, TEAMS.NATION ,
→˓PLAYERS.NAME FROM TOURNAMENTS INNER JOIN PLAYERS ON PLAYERS.ID=TOURNAMENTS.BEST_
→˓PLAYER INNER JOIN TEAMS ON TEAMS.ID=TOURNAMENTS.WINNER WHERE(TOURNAMENTS.NAME
→˓LIKE '{}%') AND (YEAR LIKE '{}%') AND (TEAMS.NATION LIKE '{}%') AND
→˓(PLAYERS.NAME LIKE '{}%')""".format(nameFind, yearFind, winnerFind, best_
→˓playerFind)

cursor = create_connection()
cursor.execute(statement)
tournaments = cursor.fetchall()
cursor.connection.commit()

close_connection(cursor)

return tournaments

• findInJointTables function in matches.py:

def findInJointTables(tournamentFind, team1Find, team2Find, scoreFind):
statement= """ SELECT MATCHES.ID, TOURNAMENTS.NAME, t1.NATION, t2.NATION, MATCHES.
→˓SCORE FROM MATCHES INNER JOIN TOURNAMENTS ON TOURNAMENTS.ID=MATCHES.TOURNAMENT
→˓INNER JOIN TEAMS t1 ON t1.ID=MATCHES.TEAM1 INNER JOIN TEAMS t2 ON t2.ID=MATCHES.
→˓TEAM2 WHERE(TOURNAMENTS.NAME LIKE '{}%') AND (t1.NATION LIKE '{}%') AND (t2.
→˓NATION LIKE '{}%') AND (MATCHES.SCORE LIKE '{}%')""".format(tournamentFind,
→˓team1Find, team2Find, scoreFind)

2.2. Code 47

Table Tennis Documentation, Release 1.0

cursor = create_connection()
cursor.execute(statement)
matches = cursor.fetchall()
cursor.connection.commit()

close_connection(cursor)

return matches

1.7 fetching all tupples

showJointTables functions used in order to fetch all the tupples. Function returns tupples as an array.

• showJointTables function in tournaments.py:

def showJointTables():
cursor = create_connection()
statement= """ SELECT TOURNAMENTS.ID, TOURNAMENTS.NAME, YEAR, TEAMS.NATION ,
→˓PLAYERS.NAME FROM TOURNAMENTS INNER JOIN PLAYERS ON PLAYERS.ID=TOURNAMENTS.BEST_
→˓PLAYER INNER JOIN TEAMS ON TEAMS.ID=TOURNAMENTS.WINNER """
cursor.execute(statement)
tournaments = cursor.fetchall()
cursor.connection.commit()

close_connection(cursor)
return tournaments

• showJointTables function in matches.py:

def showJointTables():
cursor = create_connection()
statement= """ SELECT MATCHES.ID, TOURNAMENTS.NAME, t1.NATION, t2.NATION, MATCHES.
→˓SCORE FROM MATCHES INNER JOIN TOURNAMENTS ON TOURNAMENTS.ID=MATCHES.TOURNAMENT
→˓INNER JOIN TEAMS t1 ON t1.ID = MATCHES.TEAM1 INNER JOIN TEAMS t2 ON t2.
→˓ID=MATCHES.TEAM2 """
cursor.execute(statement)
matches = cursor.fetchall()
cursor.connection.commit()

close_connection(cursor)
return matches

2 HTML handling

tournaments() and matches() functions used in order to handle HTML related works.

• tournaments function in tournaments.py:

@app.route("/tournaments/", methods=['GET', 'POST'])
def tournaments():

dsn = app.config['dsn']

app.storeT = StoreTeam(dsn)
allTeams = app.storeT.getAllTeams(dsn)

app.store = StoreP(dsn)
allPlayers = app.store.getAllPlayers(dsn)

48 Chapter 2. Developer Guide

Table Tennis Documentation, Release 1.0

if request.method == 'GET':

all_tournaments = showJointTables()
queriedTournaments = findInJointTables('?','?','?','?')

• matches function in matches.py:

@app.route("/matches", methods=['GET', 'POST'])
def matches():

allTournaments = tournaments.get_tournaments()

dsn = app.config['dsn']

app.storeT = StoreTeam(dsn)
allTeams = app.storeT.getAllTeams(dsn)

if request.method == 'GET':
all_matches = showJointTables()
queriedMatches = findInJointTables('?','?','?','?')

2.1 add block

In the add block, add_new functions called with the parameters from HTML.

• add block in tournaments.py:

elif 'add' in request.form:
--
name = request.form['name']
year = request.form['year']
winner = request.form['winner']
best_player = request.form['best_player']
--

add_new_tournament(name, year, winner, best_player) # save to db

all_tournaments = showJointTables()
queriedTournaments = findInJointTables('?','?','?','?')

• add block in matches.py:

elif 'add' in request.form:
--
tournament = request.form['tournament']
team1 = request.form['team1']
team2 = request.form['team2']
score = request.form['score']
--

add_new_match(tournament, team1, team2, score) # save to db

all_matches = showJointTables() # get all matches
queriedMatches = findInJointTables('?','?','?','?')

2.2. Code 49

Table Tennis Documentation, Release 1.0

2.2 delete block

In the delete block, delete functions called with the parameters from HTML.

• delete block in tournaments.py:

elif 'delete' in request.form:
ids = request.form.getlist('tournaments_to_delete')
for id in ids:

delete_tournament(id)
all_tournaments = showJointTables()
queriedTournaments = findInJointTables('?','?','?','?')

• delete block in matches.py:

elif 'delete' in request.form:
ids = request.form.getlist('matches_to_delete')
for id in ids:

delete_match(id)
all_matches = showJointTables()
queriedMatches = findInJointTables('?','?','?','?')

2.3 find block

In the find block, findInJointTables functions called with the parameters from HTML.

• find block in tournaments.py:

elif 'find' in request.form:
nameFind = request.form['nameFind']
yearFind = request.form['yearFind']
winnerFind = request.form['winnerFind']
best_playerFind = request.form['best_playerFind']

all_tournaments = showJointTables()
queriedTournaments = findInJointTables(nameFind,yearFind,winnerFind,best_

→˓playerFind)

• find block in matches.py:

elif 'find' in request.form:
tournamentFind = request.form['tournamentFind']
team1Find = request.form['team1Find']
team2Find = request.form['team2Find']
scoreFind = request.form['scoreFind']

all_matches = showJointTables()
queriedMatches = findInJointTables(tournamentFind, team1Find, team2Find,
→˓scoreFind)

2.4 update block

In the update block, update functions called with the parameters from HTML.

• update block in tournaments.py:

elif 'update' in request.form:
ids = request.form.getlist('update')
for id in ids:

nameUpdate = request.form['nameUpdate'+id]

50 Chapter 2. Developer Guide

Table Tennis Documentation, Release 1.0

yearUpdate = request.form['yearUpdate'+id]
winnerUpdate = request.form['winnerUpdate'+id]
best_playerUpdate = request.form['best_playerUpdate'+id]
update_tournament(id, nameUpdate, yearUpdate, winnerUpdate, best_

→˓playerUpdate)

all_tournaments = showJointTables()
queriedTournaments = findInJointTables('?','?','?','?')

• update block in matches.py:

elif 'update' in request.form:
ids = request.form.getlist('update')
for id in ids:

tournamentUpdate = request.form['tournamentUpdate'+id]
team1Update = request.form['team1Update'+id]
team2Update = request.form['team2Update'+id]
scoreUpdate = request.form['scoreUpdate'+id]
update_match(id, tournamentUpdate, team1Update, team2Update, scoreUpdate)

Parts Implemented by Ahmet Yılmaz

Database Design

1 Tables

1.1 Coaches Table

• Coaches table keeping record of the coaches data

Name Type Not Null Primary K.
ID INTEGER 0 1
NAME VARCHAR 0 0
GENDER VARCHAR 0 0
NATIONALITY VARCHAR 0 0
BIRTH_DATE VARCHAR 0 0
CURRENT_TEAM INTEGER 0 0

• name keeps the record of name of the given coach.

• gender keeps the record of gender of the given coach.

• nationality keeps the record of the nationality of the given coach.

• birth_date keeps the record of birth date of the given coach.

• current_team keeps the record of current team of the given coach which refers to teams table.

Sql statement that initialize the coaches table:

CREATE TABLE COACHES(
ID SERIAL PRIMARY KEY,
NAME VARCHAR(45),
GENDER VARCHAR(6),
NATIONALITY VARCHAR(45),
BIRTH_DATE VARCHAR(10),
CURRENT_TEAM INTEGER REFERENCES TEAMS ON DELETE CASCADE ON UPDATE

→˓CASCADE
)

2.2. Code 51

Table Tennis Documentation, Release 1.0

1.2 Player Statistics Table

• Player Statistics table keeping record of the statistics data of players.

Name Type Not Null Primary K.
ID INTEGER 0 1
PLAYER INTEGER 0 0
MATCHES_PLAYED VARCHAR 0 0
MATCHES_WON VARCHAR 0 0
WIN_RATE VARCHAR 0 0
AVERAGE_SCORE VARCHAR 0 0

• player keeps the record of name of the given player refers to players table on delete and on update cascades

• matches_played keeps the count of played matches of given player.

• matches_won keeps the count of won matches of given player.

• win_rate keeps the record of win rate of the given player.

• average_score keeps the record of average score of the given player according to matches he/she played.

Sql statement that initialize the playerstatistics table:

CREATE TABLE PLAYERSTATISTICS(
ID SERIAL PRIMARY KEY,
matches_played VARCHAR(10),
matches_won VARCHAR(10),
win_rate VARCHAR(10),
average_score VARCHAR(10),
player INTEGER REFERENCES players ON DELETE CASCADE ON UPDATE CASCADE
)

1.3 Users Table

• Users table keeping record of the users data

Name Type Not Null Primary K.
ID INTEGER 0 1
USERNAME VARCHAR 0 0
PASSWORD VARCHAR 0 0

• username keeps the record of name of the given user.

• password keeps the record of gender of the given user.

Sql statement that initialize the technic members table:

CREATE TABLE USERS(
ID SERIAL PRIMARY KEY,
USERNAME VARCHAR(45),
PASSWORD VARCHAR(6)
)

Code

1 Python Flask Extension Parts

coaches.py

• Import part of the coaches.py file

52 Chapter 2. Developer Guide

Table Tennis Documentation, Release 1.0

from flask import request
from flask import render_template
from config import app
from config import create_connection, close_connection
import psycopg2
import teams
from store import StoreTeam

render_template and request features of Flask web framework have used. app object of Flask has imported
from config. team class and StoreTeam class has imported. Since “corrent_team” attribure refers to teams ta-
ble pyscopg2 has imported as a dbapi2 for use as a database api.

• route function of coaches for rendering coaches.html file

@app.route("/coaches/", methods=['GET', 'POST'])
def coaches():
dsn = app.config['dsn']

app.store = StoreTeam(dsn)
all_teams = app.store.getAllTeams(dsn)

if request.method == 'GET':
all_coaches = join_tables()

This part of coaches function renders the url ‘/teams’ with coaches.html file. Uses ‘GET’ and ‘POST’ methods.
Uses dsn as a database settings which is implementing in config.py whether ElephantSQL or Vagrant database
system. To get all teams for joint tables first getAllTeams function used and teams assigned to all_teams vari-
able. after that join_tables function used to join teams and coaches tables to get meaningful data and assigned to
all_coaches variable.

• delete method

elif 'delete' in request.form:
ids = request.form.getlist('coaches_to_delete')
for id in ids:

delete_coach(id)

all_coaches = join_tables()

If request method is delete which means if delete button has clicked on html page. Code requests checked box
information and assign this to a list called ids. Then each element in ids list sent to delete_coach function which
deletes tuple from table. Then all_coaches variable renewed with remaining tuples.

• add method

elif 'add' in request.form:
--
name = request.form['name']
gender = request.form['gender']
nationality = request.form['nationality']
birth_date = request.form['birth_date']
current_team = request.form['current_team']
--

add_new_coach(name, gender, nationality, birth_date, current_team) #
→˓save to db

all_coaches = join_tables()

If request method is add which means add button has clicked on html page. Code requests the values entered in
textboxes. These values sent to add_new_coach function which adds the tuple with according values to the table.
New all tuples fetched to print to the screen

2.2. Code 53

Table Tennis Documentation, Release 1.0

• update method

elif 'update' in request.form:
ids = request.form.getlist('update')
for id in ids:

name_update = request.form['name_update'+id]
gender_update = request.form['gender_update'+id]
nationality_update = request.form['nationality_update'+id]
birth_date_update = request.form['birth_date_update'+id]
current_team_update = request.form['current_team_update'+id]

update_coach(id,name_update,gender_update,nationality_update,
→˓birth_date_update,current_team_update)

all_coaches = join_tables()

If request method is update which means if update button clicked on html page. Code requests the values entered
in textboxes and gets the ids with checkedboxes. for each id tuples changed with new values. New all tuples
fetched to print to the screen.

• find method

elif 'find' in request.form:
para_1 = request.form['name_find']
para_2 = request.form['gender_find']
para_3 = request.form['nationality_find']
para_4 = request.form['birth_date_find']
para_5 = request.form['current_team_find']

all_coaches = find_coach(para_1,para_2,para_3,para_4,para_5)

Else if request method is find which means find button clicked on html page. Code requests the values from
textboxes for attributes. values sent to find_coach function to select according tuples from table and print.

• showall method

elif 'showall' in request.form:

all_coaches = join_tables()

Else if request method is showall which means Show All button has clicked on html page. Coaches table and
teams table joint to show all coaches tables tuples with according curent_team value.

return render_template("coaches.html", coaches=all_coaches, teams_
→˓select=all_teams)

Route function returns render_template function which gets all coaches and send them to html page to print to the
screen.

playerstatistics.py

Same things did as did in coaches.py But playerstatistics table has a different foreign key which refers to players
table

users.py

Same things did as did in coaches.py

54 Chapter 2. Developer Guide

Table Tennis Documentation, Release 1.0

2 Python PostgreSql Parts

coaches.py

• get_coaches function

def get_coaches():
cursor = create_connection()

cursor.execute("SELECT * FROM coaches;")
coaches = cursor.fetchall()

close_connection(cursor)

return coaches

This function selects all tuples from table without condition.

• create_init_coaches function

def create_init_coaches():

add_new_coach('Zehra', 'female', 'turkish', '1964', 1)
add_new_coach('Mike', 'male', 'english', '1954', 2)
add_new_coach('Chan', 'male', 'chinese', '1962', 3)

This function adds 3 initial tuple when initialize database function called using add_new_coach function.

• update_coach function

def update_coach(id, name_update, gender_update, nationality_update,
→˓birth_date_update, current_team_update):

cursor = create_connection()
statement = """UPDATE COACHES SET NAME = '{}', GENDER = '{}',

→˓NATIONALITY = '{}', BIRTH_DATE = '{}', CURRENT_TEAM = '{}' WHERE ID
→˓= {}""".format(name_update, gender_update, nationality_update, birth_
→˓date_update, current_team_update,id)

cursor.execute(statement)
cursor.connection.commit()

close_connection(cursor)

This function updates tuples with values coming from html page.

• find_coach function

def find_coach(name_find, gender_find, nationality_find, birth_date_
→˓find, current_team_find):

statement= """ SELECT COACHES.ID, COACHES.NAME, COACHES.GENDER,
→˓NATIONALITY, BIRTH_DATE, TEAMS.NATION FROM COACHES INNER JOIN TEAMS
→˓ON TEAMS.ID=COACHES.CURRENT_TEAM WHERE(COACHES.NAME LIKE '{}%')
→˓AND (COACHES.GENDER LIKE '{}%') AND (NATIONALITY LIKE '{}%') AND
→˓(BIRTH_DATE LIKE '{}%') AND (TEAMS.NATION LIKE '{}%')""".
→˓format(name_find, gender_find, nationality_find, birth_date_find,
→˓current_team_find)

cursor = create_connection()
cursor.execute(statement)
coaches = cursor.fetchall()
cursor.connection.commit()

close_connection(cursor)

2.2. Code 55

Table Tennis Documentation, Release 1.0

return coaches

This function finds tuples with values coming from html page.

• add_new_coach function

def add_new_coach(name, gender, nationality, birth_date, current_team):
cursor = create_connection()

cursor.execute("INSERT INTO coaches (name, gender, nationality,
→˓birth_date, current_team) VALUES (%s, %s, %s, %s, %s)", (name,
→˓gender, nationality, birth_date, current_team))

cursor.connection.commit()

close_connection(cursor)

return True

This function adds a new tuple to table with given values from html page.

• delete_coach function

def delete_coach(id):
cursor = create_connection()
statement = """DELETE FROM COACHES WHERE ID={}""".format(id)
cursor.execute(statement)
cursor.connection.commit()

close_connection(cursor)

This function deletes the tuples from table which selected with checkboxes from html page.

• join_tables function

def join_tables():
cursor = create_connection()
statement= """ SELECT COACHES.ID, COACHES.NAME, COACHES.GENDER,

→˓NATIONALITY, BIRTH_DATE, TEAMS.NATION FROM COACHES INNER JOIN TEAMS
→˓ON TEAMS.ID=COACHES.CURRENT_TEAM """

cursor.execute(statement)
coaches = cursor.fetchall()
cursor.connection.commit()

close_connection(cursor)
return coaches

This function joins coaches and teams table for current_team value of coaches table can be printed with the vale it
refers.

playerstatistics.py

Same things did as did in coaches.py But playerstatistics table has a different foreign key which refers to players
table

users.py

Same things did as did in coaches.py

56 Chapter 2. Developer Guide

Table Tennis Documentation, Release 1.0

Parts Implemented by Fırat Bayram

2.2. Code 57

	User Guide
	Developer Guide

