

Welcome to the 102shows documentation!

[image: 102shows logo]

Note

This documentation is still not completely finished.
If you are missing something, please open an issue [https://github.com/Yottabits/102shows/issues/new].

Contents:

	Using 102shows
	Installation

	Configuration

	Running

	Supported LED chipsets
	APA102 (aka Adafruit DotStar)

	No LED Strip (Dummy Driver)

	Developing for 102shows
	MQTT

	Lightshows

	Developer Reference
	mqttcontrol

	drivers

	helpers

	lightshows

	Exceptions

Thanks!

	To tinue [https://github.com/tinue] for the APA102_Pi [https://github.com/tinue/APA102_Pi] library.
This was the code that 102shows was originally based on.

	The authors and contributors of the libraries that 102shows uses:
	paho_mqtt [https://pypi.python.org/pypi/paho-mqtt]

	spidev [https://github.com/doceme/py-spidev]

	PyYAML [http://pyyaml.org/]

	orderedattrdict [https://github.com/sanand0/orderedattrdict]

	coloredlogs [https://coloredlogs.readthedocs.io/]

	The people of Sphinx [https://sphinx.readthedocs.io/], the great tool that is used for this documentation
and the authors and contributors of the plugins for Sphinx that we use:
	sphinx-autodoc-typehints [https://github.com/agronholm/sphinx-autodoc-typehints]

	sphinx_rtd_theme [https://github.com/snide/sphinx_rtd_theme]

Indices and tables

	Index

	Module Index

	Search Page

Trouble?

Open an issue [https://github.com/Yottabits/102shows/issues]
on GitHub [https://github.com/Yottabits/102shows/issues]
or write an email to me: 102shows@leiner.me

Using 102shows

Installation

102shows consists of two parts:

	the lightshow server, which should run on a Raspberry Pi -
it controls the LED strip via SPI - it listens for MQTT messages
that tell it which show to start (and what the paramters for the
show are)

	the UI - it delivers a nice web interface - it sends the MQTT
messages to the server

For the two elements to be able to communicate (via MQTT) you need an
MQTT broker, for example mosquitto

All of these can run on the same Raspberry Pi but only the server has
to.

MQTT broker

If you already have an MQTT broker in your network, you can use it.
Else, install mosquitto via sudo apt-get install mosquitto.
In any case, you will need the host, port (and maybe access credentials)
of your MQTT broker for later.

Server

For the latest stable release:
In the folder you want to install 102shows in, run:

wget -q -O 102s-setup.sh https://git.io/vHydu; chmod u+x 102s-setup.sh; ./102s-setup.sh stable; rm 102s-setup.sh

This will launch an assistant that will lead you through the
installation process.

Installing a development version

The setup script 102s-setup.sh takes the GitHub branch to clone as an argument.
So, if you want to install the latest development version (which resides on the master branch),
you should run:

wget -q -O 102s-setup.sh https://git.io/vHydu; chmod u+x 102s-setup.sh; ./102s-setup.sh master; rm 102s-setup.sh

Web UI

1. Prerequisites

The web UI depends on Node-RED [https://nodered.org/] with the
dashboard [https://flows.nodered.org/node/node-red-dashboard]
add-on.

	Install Node-RED:
Follow the Installation Instructions [https://nodered.org/docs/getting-started/installation]

Raspbian Tip

There is a special simple installation way [https://nodered.org/docs/hardware/raspberrypi]
for the Raspberry Pi:

bash <(curl -sL https://raw.githubusercontent.com/node-red/raspbian-deb-package/master/resources/update-nodejs-and-nodered)

Warning

If you have installed any version of node-red-contrib-ui,
you have to uninstall it before installing node-red-dashboard.

	Install the Node-RED dashboard add-on:

cd ~/.node-red
npm install node-red-dashboard

2. Start Node-RED

Execute node-red on a console. The Node-RED administration interface
should now be available on yournoderedhost:1880

Raspbian Tip

If you want Node-RED to automatically start on boot, execute:

sudo systemctl enable nodered.service

3. Paste the 102shows UI in Node-RED

Copy the contents of
ui/nodered.json [https://raw.githubusercontent.com/Yottabits/102shows/stable/ui/nodered.json]
into the clipboard. Go to the Node-RED admin interface and in the main
menu (upper right corner) choose Import >> Clipboard
and paste the code you copied earlier into the window that is opening.
Confirm with Import

You should now see the flow LED control.

Installing a development version

The link to ui/nodered.json [https://raw.githubusercontent.com/Yottabits/102shows/stable/ui/nodered.json]
above points to the latest stable version.

4. Configure the 102shows UI

In the upper left LED control there is a node named global
settings. Double-click on it to open it and modify the preferences in
the code so that they match the settings in your server-side
config.py.

Save with Done and hit the red Deploy button on the upper right.

5. Have fun 😄

The UI is now available on yournoderedhost:1880/ui and you should
be able to control your LED strips from there 👍

Configuration

Todo

Give configuration advice

Running

Server

	Start the MQTT broker

	Execute /path/to/102shows/server/run.sh

Web UI

Just start Node-RED. The panel should appear on yournoderedhost:1880/ui

Supported LED chipsets

APA102 (aka Adafruit DotStar)

The APA102 [https://www.adafruit.com/products/2343] is an RGB LED with an
integrated driver chip that can be addressed via SPI.
That makes it ideal for the Raspberry Pi as talking to an SPI device from Python
is really easy.
Another advantage of this chip is its support for high SPI data rates (for short
strips of less than 200 LEDs you can easily do 8 MHz) which results in very high
framerates and smooth-looking animations.

You can find cheap strips on AliExpress etc. or buy them at Adafruit - they sell
them as DotStar [https://www.adafruit.com/products/2240].

This driver was originally written by tinue [https://github.com/tinue/APA102_Pi]
and can be found here [https://github.com/tinue/APA102_Pi].

	
class drivers.apa102.APA102(num_leds: int, max_clock_speed_hz: int = 4000000, max_global_brightness: float = 1.0)

	
Note

A very brief overview of the APA102

An APA102 LED is addressed with SPI. The bits are shifted in one by one,
starting with the least significant bit.

An LED usually just forwards everything that is sent to its data-in to data-out. While doing this, it
remembers its own color and keeps glowing with that color as long as there is power.

An LED can be switched to not forward the data, but instead use the data to change it’s own color.
This is done by sending (at least) 32 bits of zeroes to data-in. The LED then accepts the next
correct 32 bit LED frame (with color information) as its new color setting.

After having received the 32 bit color frame, the LED changes color, and then resumes to just copying
data-in to data-out.

The really clever bit is this: While receiving the 32 bit LED frame, the LED sends zeroes on its
data-out line. Because a color frame is 32 bits, the LED sends 32 bits of zeroes to the next LED.
As we have seen above, this means that the next LED is now ready to accept a color frame and
update its color.

So that’s really the entire protocol:

	Start by sending 32 bits of zeroes. This prepares LED 1 to update its color.

	Send color information one by one, starting with the color for LED 1, then LED 2 etc.

	Finish off by cycling the clock line a few times to get all data to the very last LED on the strip

The last step is necessary, because each LED delays forwarding the data a bit. Imagine ten people in
a row. When you yell the last color information, i.e. the one for person ten, to the first person in
the line, then you are not finished yet. Person one has to turn around and yell it to person 2, and
so on. So it takes ten additional “dummy” cycles until person ten knows the color. When you look closer,
you will see that not even person 9 knows the color yet. This information is still with person 2.
Essentially the driver sends additional zeroes to LED 1 as long as it takes for the last color frame
to make it down the line to the last LED.

	Restrictions of this driver:

	
	strips cannot have more than 1024 LEDs

The constructor initializes the strip connection via SPI

	
clear_buffer()

	Resets all pixels in the color buffer to (0,0,0).

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
clear_strip()

	Clears the color buffer, then invokes a blackout on the strip by calling show()

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
close()

	Closes the SPI connection to the strip.

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
color_bytes_to_tuple()

	Converts a 3-byte color value (like FF001A) into an RGB color tuple (like (255, 0, 26)).

	Parameters:	rgb_color (int [https://docs.python.org/3.4/library/functions.html#int]) – a 3-byte RGB color value represented as a base-10 integer

	Return type:	tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]

	Returns:	color tuple (red, green, blue)

	
color_tuple_to_bytes(green, blue)

	Converts an RGB color tuple (like (255, 0, 26)) into a 3-byte color value (like FF001A)

	Parameters:	
	red (float [https://docs.python.org/3.4/library/functions.html#float]) – red component of the tuple (0.0 - 255.0)

	green (float [https://docs.python.org/3.4/library/functions.html#float]) – green component of the tuple (0.0 - 255.0)

	blue (float [https://docs.python.org/3.4/library/functions.html#float]) – blue component of the tuple (0.0 - 255.0)

	Return type:	int [https://docs.python.org/3.4/library/functions.html#int]

	Returns:	the tuple components joined into a 3-byte value with each byte representing a color component

	
freeze()

	Freezes the strip.
All state-changing methods (on_color_change() and on_brightness_change())
must not do anything anymore and leave the buffer unchanged.

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
get_pixel(led_num)

	Returns the pixel at index led_num

	Parameters:	led_num (int [https://docs.python.org/3.4/library/functions.html#int]) – the index of the pixel you want to get

	Return type:	tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]

	Returns:	(red, green, blue) as tuple

	
classmethod led_prefix(brightness)

	generates the first byte of a 4-byte SPI message to a single APA102 module

	Parameters:	brightness (float [https://docs.python.org/3.4/library/functions.html#float]) – float from 0.0 (off) to 1.0 (full brightness)

	Return type:	int [https://docs.python.org/3.4/library/functions.html#int]

	Returns:	the brightness byte

	
max_refresh_time_sec = 1

	the maximum time the whole strip takes to refresh

	
on_brightness_change(led_num)

	For the LED at led_num, regenerate the prefix and store the new prefix to the message buffer

	Parameters:	led_num (int [https://docs.python.org/3.4/library/functions.html#int]) – The index of the LED whose prefix should be regenerated

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
on_color_change(led_num, red, green, blue)

	Changes the message buffer after a pixel was changed in the global color buffer.
Also, a grayscale correction is performed.
To send the message buffer to the strip and show the changes, you must invoke show()

	Parameters:	
	led_num – index of the pixel to be set

	red (float [https://docs.python.org/3.4/library/functions.html#float]) – red component of the pixel (0.0 - 255.0)

	green (float [https://docs.python.org/3.4/library/functions.html#float]) – green component of the pixel (0.0 - 255.0)

	blue (float [https://docs.python.org/3.4/library/functions.html#float]) – blue component of the pixel (0.0 - 255.0)

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
rotate(positions=1)

	Treating the internal leds array as a circular buffer, rotate it by the specified number of positions.
The number can be negative, which means rotating in the opposite direction.

	Parameters:	positions (int [https://docs.python.org/3.4/library/functions.html#int]) – the number of steps to rotate

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
set_brightness(led_num, brightness)

	Sets the brightness for a single LED in the strip.
A global multiplier is applied.

	Parameters:	
	led_num (int [https://docs.python.org/3.4/library/functions.html#int]) – the target LED index

	brightness (float [https://docs.python.org/3.4/library/functions.html#float]) – the desired brightness (0.0 - 1.0)

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
set_global_brightness(brightness)

	Sets a global brightness multiplicator which applies to every single LED’s brightness.

	Parameters:	brightness (float [https://docs.python.org/3.4/library/functions.html#float]) – the global brightness (0.0 - 1.0) multiplicator to be set

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
set_global_brightness_percent(brightness)

	Just like set_global_brightness(), but with a 0-100 percent value.

	Parameters:	brightness (float [https://docs.python.org/3.4/library/functions.html#float]) – the global brightness (0.0 - 100.0) multiplicator to be set

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
set_pixel(led_num, red, green, blue)

	The buffer value of pixel led_num is set to (red, green, blue)

	Parameters:	
	led_num (int [https://docs.python.org/3.4/library/functions.html#int]) – index of the pixel to be set

	red (float [https://docs.python.org/3.4/library/functions.html#float]) – red component of the pixel (0.0 - 255.0)

	green (float [https://docs.python.org/3.4/library/functions.html#float]) – green component of the pixel (0.0 - 255.0)

	blue (float [https://docs.python.org/3.4/library/functions.html#float]) – blue component of the pixel (0.0 - 255.0)

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
set_pixel_bytes(led_num, rgb_color)

	Changes the pixel led_num to the given color in the buffer.
To send the buffer to the strip and show the changes, invoke show()

If you do not know, how the 3-byte rgb_color works, just use set_pixel() .

	Parameters:	
	led_num (int [https://docs.python.org/3.4/library/functions.html#int]) – index of the pixel to be set

	rgb_color (int [https://docs.python.org/3.4/library/functions.html#int]) – a 3-byte RGB color value represented as a base-10 integer

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
show()

	sends the buffered color and brightness values to the strip

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
static spi_end_frame()

	As explained above, dummy data must be sent after the last real color information so that all of the data
can reach its destination down the line.
The delay is not as bad as with the human example above. It is only 1/2 bit per LED. This is because the
SPI clock line needs to be inverted.

Say a bit is ready on the SPI data line. The sender communicates this by toggling the clock line. The bit
is read by the LED, and immediately forwarded to the output data line. When the clock goes down again
on the input side, the LED will toggle the clock up on the output to tell the next LED that the bit is ready.

After one LED the clock is inverted, and after two LEDs it is in sync again, but one cycle behind. Therefore,
for every two LEDs, one bit of delay gets accumulated. For 300 LEDs, 150 additional bits must be fed to
the input of LED one so that the data can reach the last LED. In this implementation we add a few more zero
bytes at the end, just to be sure.

Ultimately, we need to send additional num_leds/2 arbitrary data bits, in order to trigger num_leds/2
additional clock changes. This driver sends zeroes, which has the benefit of getting LED one partially or
fully ready for the next update to the strip. An optimized version of the driver could omit the
spi_start_frame() method if enough zeroes have been sent as part of spi_end_frame().

	Return type:	list [https://docs.python.org/3.4/library/stdtypes.html#list]

	Returns:	The end frame to be sent at the end of each SPI transmission

	
static spi_start_frame()

	To start a transmission, one must send 32 empty bits

	Return type:	list [https://docs.python.org/3.4/library/stdtypes.html#list]

	Returns:	The 32-bit start frame to be sent at the beginning of a transmission

	
sync_down()

	Reads the shared color and brightness buffers and copies them to the local buffers

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
sync_up()

	Copies the local color and brightness buffers to the shared buffer
so other processes can see the current strip state.

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
unfreeze()

	Revokes all effects of freeze()

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

No LED Strip (Dummy Driver)

	
class drivers.dummy.DummyDriver(num_leds: int, max_clock_speed_hz: int = 4000000, max_global_brightness: float = 1.0)

	A Dummy Driver that just shows the LED states on the logger.
This can be useful for developing without having a real LED strip at hand.

	
clear_buffer()

	Resets all pixels in the color buffer to (0,0,0).

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
clear_strip()

	Clears the color buffer, then invokes a blackout on the strip by calling show()

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
color_bytes_to_tuple()

	Converts a 3-byte color value (like FF001A) into an RGB color tuple (like (255, 0, 26)).

	Parameters:	rgb_color (int [https://docs.python.org/3.4/library/functions.html#int]) – a 3-byte RGB color value represented as a base-10 integer

	Return type:	tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]

	Returns:	color tuple (red, green, blue)

	
color_tuple_to_bytes(green, blue)

	Converts an RGB color tuple (like (255, 0, 26)) into a 3-byte color value (like FF001A)

	Parameters:	
	red (float [https://docs.python.org/3.4/library/functions.html#float]) – red component of the tuple (0.0 - 255.0)

	green (float [https://docs.python.org/3.4/library/functions.html#float]) – green component of the tuple (0.0 - 255.0)

	blue (float [https://docs.python.org/3.4/library/functions.html#float]) – blue component of the tuple (0.0 - 255.0)

	Return type:	int [https://docs.python.org/3.4/library/functions.html#int]

	Returns:	the tuple components joined into a 3-byte value with each byte representing a color component

	
freeze()

	Freezes the strip.
All state-changing methods (on_color_change() and on_brightness_change())
must not do anything anymore and leave the buffer unchanged.

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
get_pixel(led_num)

	Returns the pixel at index led_num

	Parameters:	led_num (int [https://docs.python.org/3.4/library/functions.html#int]) – the index of the pixel you want to get

	Return type:	tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]

	Returns:	(red, green, blue) as tuple

	
rotate(positions=1)

	Treating the internal leds array as a circular buffer, rotate it by the specified number of positions.
The number can be negative, which means rotating in the opposite direction.

	Parameters:	positions (int [https://docs.python.org/3.4/library/functions.html#int]) – the number of steps to rotate

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
set_brightness(led_num, brightness)

	Sets the brightness for a single LED in the strip.
A global multiplier is applied.

	Parameters:	
	led_num (int [https://docs.python.org/3.4/library/functions.html#int]) – the target LED index

	brightness (float [https://docs.python.org/3.4/library/functions.html#float]) – the desired brightness (0.0 - 1.0)

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
set_global_brightness(brightness)

	Sets a global brightness multiplicator which applies to every single LED’s brightness.

	Parameters:	brightness (float [https://docs.python.org/3.4/library/functions.html#float]) – the global brightness (0.0 - 1.0) multiplicator to be set

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
set_global_brightness_percent(brightness)

	Just like set_global_brightness(), but with a 0-100 percent value.

	Parameters:	brightness (float [https://docs.python.org/3.4/library/functions.html#float]) – the global brightness (0.0 - 100.0) multiplicator to be set

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
set_pixel(led_num, red, green, blue)

	The buffer value of pixel led_num is set to (red, green, blue)

	Parameters:	
	led_num (int [https://docs.python.org/3.4/library/functions.html#int]) – index of the pixel to be set

	red (float [https://docs.python.org/3.4/library/functions.html#float]) – red component of the pixel (0.0 - 255.0)

	green (float [https://docs.python.org/3.4/library/functions.html#float]) – green component of the pixel (0.0 - 255.0)

	blue (float [https://docs.python.org/3.4/library/functions.html#float]) – blue component of the pixel (0.0 - 255.0)

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
set_pixel_bytes(led_num, rgb_color)

	Changes the pixel led_num to the given color in the buffer.
To send the buffer to the strip and show the changes, invoke show()

If you do not know, how the 3-byte rgb_color works, just use set_pixel() .

	Parameters:	
	led_num (int [https://docs.python.org/3.4/library/functions.html#int]) – index of the pixel to be set

	rgb_color (int [https://docs.python.org/3.4/library/functions.html#int]) – a 3-byte RGB color value represented as a base-10 integer

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
sync_down()

	Reads the shared color and brightness buffers and copies them to the local buffers

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
sync_up()

	Copies the local color and brightness buffers to the shared buffer
so other processes can see the current strip state.

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
unfreeze()

	Revokes all effects of freeze()

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

Developing for 102shows

MQTT

The 102shows server can be controlled completely via MQTT.
On this page, you see the commands it responds to.

Paths

The general scheme is {prefix}/{sys_name}/show/{show_name}/{command}

Switching a show

Starting a show

	topic: {prefix}/{sys_name}/show/start

	payload: JSON Object, for example:

{
 "name": "name_of_my_show",
 "parameters": {
 "some_time_sec": 3.5,
 "arbitrary_color": [255, 64, 8]
 }
}

The parameters block is optional.

	retained: no

Stopping a show

	topic: {prefix}/{sys_name}/show/stop

	payload: none needed

	retained: no

Response of the system

	topic: {prefix}/{sys_name}/show/current

	payload: show name as string

	retained: yes

The system is sending this message every time the current show is changed.

Global brightness

Setting the global brightness

	topic: {prefix}/{sys_name}/global-brightness/set

	payload: string containing a floating-point number between 0.0 and 1.0

	retained: no

Response of the system

	topic: {prefix}/{sys_name}/global-brightness/current

	payload: string containing a floating-point number between 0.0 and 1.0

	retained: yes

The system is sending this message every time the brightness is changed.

Show-specific parameters

Setting a parameter

	topic: {prefix}/{sys_name}/show/{show-name}/parameters/set

	payload: JSON

	retained: no

Response of the system

	topic: {prefix}/{sys_name}/show/{show-name}/parameters/current

	payload: JSON with all the parameters, for example:

{
 "some_time_sec": 3.5,
 "arbitrary_color": [255, 64, 8]
}

	retained: yes

The system is sending this message every time the parameter is changed.

General commands

The MQTT controller listens for the commands start and stop for all shows,
and all shows (should) respond to the brightness command.
Any other commands (so all except for start, stop and brightness)
are up to the individual lightshow.

start

Todo

fix method links

The MQTT controller stops (see below) any running show.
Then it checks if the given parameters (the JSON payload of the MQTT start message)
are valid by invoking show.check_runnable().
If the show calls the parameters valid, the controller starts a new process
that runs the method show.run(strip, parameters).

stop

The MQTT controller asks the lightshow process kindly to join by sending
SIGINT to the show process.
The Lightshow base template implements a handler for this signal and usually
saves the current strip state and joins after a few milliseconds.
However, if the process does not join after 1 second, it is terminated by the controller.

brightness

This command is handled by lightshows (in earlier versions, the controller
handled brightness changes - but two processes accessing the same strip at
the same time causes a lot of trouble).
They change the brightness of a strip. Payload is a float from 0 to 100.

Lightshow-specific commands

Each lightshow can implement its own commands, like foo-color, velocity (of an animation) etc.
The name of the parameter must not be start or stop

Lightshows

Formal interface

	
	any show should reside in its own file (aka module) under server/lightshows/

	for example: myshow.py

	
	the module must be registered in the list __all__ in lightshows

	for example:

__all__ = ['foo', 'bar', 'myshow']

	
	all lightshows should inherit the basic lightshow template under lightshows.templates.base

	for example:

from lightshows.templates.base import *

def MyShow(Lightshow):
 def run(self):
 ...

 def check_runnable(self):
 ...

 def set_parameter(self):
 ...

	
	it must be registered under shows in config file

	for example:

configuration.shows('MyShow') = myshow.MyShow

creating a lightshows object

It is really simple:

my_show_object = lightshows.__active__.shows['commonnameofthelightshow'](strip, parameters)

You could access the lightshow class directly, but the 102shows convention is to access the class
by its common name in the shows array under lightshows.active

There are two arguments that you have to pass to the constructor:

	strip: A drivers.LEDStrip object representing your strip

	parameters: A dict [https://docs.python.org/3.4/library/stdtypes.html#dict] mapping parameter names (of the lightshow) to the parameter values,
for example:

parameters = {'example_rgb_color': (255,127,8),
 'an_arbitrary_fade_time_sec': 1.5}

See also: The documentation of lightshows.templates.base.Lightshow

Example

a lightweight example is lightshows.solidcolor

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	# SolidColor
(c) 2016-2017 Simon Leiner
licensed under the GNU Public License, version 2

from helpers.color import blend_whole_strip_to_color
from helpers.preprocessors import list_to_tuple
from lightshows.templates.base import *

class SolidColor(Lightshow):
 """\
 The whole strip shines in the same color.

 Parameters:
 ===
 || || python || JSON representation ||
 || color: || 3x1 tuple || 3x1 array ||
 ===
 """

 def init_parameters(self):
 self.register('color', None, verify.rgb_color_tuple, preprocessor=list_to_tuple)

 def check_runnable(self):
 if self.p.value['color'] is None:
 raise InvalidParameters.missing('color')

 def run(self):
 blend_whole_strip_to_color(self.strip, self.p.value['color'])

Other templates

Todo

explain other templates

ColorCycle

Todo

explain color cycle

Developer Reference

This will give you an overview of all the classes in 102shows.

mqttcontrol

The MQTT controller is the essential idea of 102shows:
Starting and controlling lightshows via MQTT without making
lightshow development very hard.

The MQTT controller takes care of reading the configuration
file and initializing the LED strip with the right driver,
providing the MQTT interface for starting and stopping shows
(of course) and it ensures that only one lightshow is running
at the same time. You can think of it as the “main function”
of 102shows that is starting and controlling all things that
happen.

	
class mqttcontrol.MQTTControl(config: orderedattrdict.AttrDict)

	This class provides function to start/stop the shows under lightshows/
according to the commands it receives via MQTT

	
notify_user(message, qos=0)

	send to the MQTT notification channel: Node-RED will display a toast notification

	Parameters:	
	message – the text to be displayed

	qos – MQTT parameter

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
on_connect(client, userdata, flags, rc)

	subscribe to all messages related to this LED installation

	
on_message(client, userdata, msg)

	react to a received message and eventually starts/stops a show

	
run()

	start the listener

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
start_show(show_name, parameters)

	looks for a show, checks if it can run and if so, starts it in an own process

	Parameters:	
	show_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – name of the show to be started

	parameters (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – these are passed to the show

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
stop_controller(signum=None, frame=None)

	what happens if the controller exits

	
stop_running_show(timeout_sec=1)

	stops any running show

	Parameters:	timeout_sec (float [https://docs.python.org/3.4/library/functions.html#float]) – time the show process has until it is terminated

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
stop_show(show_name)

	stops a show with a given name.
If this show is not running, the function does nothing.

	Parameters:	show_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – name of the show to be stopped

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

drivers

Structure

102shows is designed to work with several types of LED strips.
Currently, only APA102 (aka Adafruit DotStar) chips are supported
but other chipsets will be included in the future.

There is also a Dummy driver included.
It does not control any LED strip. It merely manages similar internal
buffers as a “normal” driver and if drivers.dummy.DummyDriver.show()
is called, it will print the state of all LEDs in the hypothetical strip
to the debug output. This is particular useful for tests on a machine
with no actual LED strip attached.

To be able to effortlessly switch between drivers, there is a common
interface: All drivers should base on the class drivers.LEDStrip
and be located under /path/to/102shows/server/drivers.

Note

For 102shows to find and use the driver, it must have an entry in both
drivers.__all__ and drivers.__active__.drivers.

Interface

	
class drivers.LEDStrip(num_leds: int, max_clock_speed_hz: int = 4000000, max_global_brightness: float = 1.0)

	This class provides the general interface for LED drivers that the lightshows use.
All LED drivers for 102shows should inherit this class.
Mind the following:

	Pixel order is r,g,b

	Pixel resolution (number of dim-steps per color component) is 8-bit, so minimum brightness is 0
and maximum brightness is 255

The constructor stores the given parameters and initializes the color and brightness buffers.
Drivers can and should extend this method.

	Parameters:	
	num_leds (int [https://docs.python.org/3.4/library/functions.html#int]) – number of LEDs in the strip

	max_clock_speed_hz (int [https://docs.python.org/3.4/library/functions.html#int]) – maximum clock speed (Hz) of the bus

	
clear_buffer()

	Resets all pixels in the color buffer to (0,0,0).

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
clear_strip()

	Clears the color buffer, then invokes a blackout on the strip by calling show()

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
close()

	An abstract method to be overwritten by the drivers.

It should close the bus connection and clean up any remains.

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
static color_bytes_to_tuple()

	Converts a 3-byte color value (like FF001A) into an RGB color tuple (like (255, 0, 26)).

	Parameters:	rgb_color (int [https://docs.python.org/3.4/library/functions.html#int]) – a 3-byte RGB color value represented as a base-10 integer

	Return type:	tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]

	Returns:	color tuple (red, green, blue)

	
static color_tuple_to_bytes(green, blue)

	Converts an RGB color tuple (like (255, 0, 26)) into a 3-byte color value (like FF001A)

	Parameters:	
	red (float [https://docs.python.org/3.4/library/functions.html#float]) – red component of the tuple (0.0 - 255.0)

	green (float [https://docs.python.org/3.4/library/functions.html#float]) – green component of the tuple (0.0 - 255.0)

	blue (float [https://docs.python.org/3.4/library/functions.html#float]) – blue component of the tuple (0.0 - 255.0)

	Return type:	int [https://docs.python.org/3.4/library/functions.html#int]

	Returns:	the tuple components joined into a 3-byte value with each byte representing a color component

	
freeze()

	Freezes the strip.
All state-changing methods (on_color_change() and on_brightness_change())
must not do anything anymore and leave the buffer unchanged.

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
get_pixel(led_num)

	Returns the pixel at index led_num

	Parameters:	led_num (int [https://docs.python.org/3.4/library/functions.html#int]) – the index of the pixel you want to get

	Return type:	tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]

	Returns:	(red, green, blue) as tuple

	
max_refresh_time_sec = 1

	The maximum time (in seconds) that a call of show() needs to execute.
Currently only used in lightshows.templates.base.sleep()

	
on_brightness_change(led_num)

	Reacts to a brightness change at led_num by modifying the message buffer

	Parameters:	led_num (int [https://docs.python.org/3.4/library/functions.html#int]) – number of the LED whose brightness was modified

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
on_color_change(led_num, red, green, blue)

	Changes the message buffer after a pixel was changed in the global color buffer.
To send the buffer to the strip and show the changes, you must invoke show()

	Parameters:	
	led_num – index of the pixel to be set

	red (float [https://docs.python.org/3.4/library/functions.html#float]) – red component of the pixel (0.0 - 255.0)

	green (float [https://docs.python.org/3.4/library/functions.html#float]) – green component of the pixel (0.0 - 255.0)

	blue (float [https://docs.python.org/3.4/library/functions.html#float]) – blue component of the pixel (0.0 - 255.0)

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
rotate(positions=1)

	Treating the internal leds array as a circular buffer, rotate it by the specified number of positions.
The number can be negative, which means rotating in the opposite direction.

	Parameters:	positions (int [https://docs.python.org/3.4/library/functions.html#int]) – the number of steps to rotate

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
set_brightness(led_num, brightness)

	Sets the brightness for a single LED in the strip.
A global multiplier is applied.

	Parameters:	
	led_num (int [https://docs.python.org/3.4/library/functions.html#int]) – the target LED index

	brightness (float [https://docs.python.org/3.4/library/functions.html#float]) – the desired brightness (0.0 - 1.0)

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
set_global_brightness(brightness)

	Sets a global brightness multiplicator which applies to every single LED’s brightness.

	Parameters:	brightness (float [https://docs.python.org/3.4/library/functions.html#float]) – the global brightness (0.0 - 1.0) multiplicator to be set

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
set_global_brightness_percent(brightness)

	Just like set_global_brightness(), but with a 0-100 percent value.

	Parameters:	brightness (float [https://docs.python.org/3.4/library/functions.html#float]) – the global brightness (0.0 - 100.0) multiplicator to be set

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
set_pixel(led_num, red, green, blue)

	The buffer value of pixel led_num is set to (red, green, blue)

	Parameters:	
	led_num (int [https://docs.python.org/3.4/library/functions.html#int]) – index of the pixel to be set

	red (float [https://docs.python.org/3.4/library/functions.html#float]) – red component of the pixel (0.0 - 255.0)

	green (float [https://docs.python.org/3.4/library/functions.html#float]) – green component of the pixel (0.0 - 255.0)

	blue (float [https://docs.python.org/3.4/library/functions.html#float]) – blue component of the pixel (0.0 - 255.0)

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
set_pixel_bytes(led_num, rgb_color)

	Changes the pixel led_num to the given color in the buffer.
To send the buffer to the strip and show the changes, invoke show()

If you do not know, how the 3-byte rgb_color works, just use set_pixel() .

	Parameters:	
	led_num (int [https://docs.python.org/3.4/library/functions.html#int]) – index of the pixel to be set

	rgb_color (int [https://docs.python.org/3.4/library/functions.html#int]) – a 3-byte RGB color value represented as a base-10 integer

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
show()

	Subclasses should overwrite this method

This method should show the buffered pixels on the strip,
e.g. write the message buffer to the port on which the strip is connected.

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
sync_down()

	Reads the shared color and brightness buffers and copies them to the local buffers

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
sync_up()

	Copies the local color and brightness buffers to the shared buffer
so other processes can see the current strip state.

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
synced_red_buffer = None

	the individual dim factors for each LED (0-1), EXCLUDING the global dim factor

	
unfreeze()

	Revokes all effects of freeze()

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

helpers

Overview

This module includes several helpful functions for 102shows to use.
Any functionality that could be used in multiple parts of the program should be defined here.

	For example:

	
	checking if color tuples are valid: helpers.verify.rgb_color_tuple()

	add two color tuples: helpers.color.add_tuples()

	interpreting an incoming MQTT message: helpers.mqtt

	parsing the config.yml file: helpers.configparser

The module also includes some functions that are just too generic to include them in the one
place where they are used.

	For example:

	
	getting the 102shows version: helpers.get_logo()

	getting the colored 102shows logo: helpers.get_version()

	
helpers.get_logo(filename='../logo')

	Returns the colored 102shows logo. It is read from /path/to/102shows/logo

	Parameters:	filename (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – You can specify another logo source file, if you want.

	Return type:	str [https://docs.python.org/3.4/library/stdtypes.html#str]

	Returns:	The logo as a multiline string. The colors are included as escape characters.

	
helpers.get_version(filename='../version')

	Returns the current 102shows version as a string that is read from a special version file

	Parameters:	filename (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Name of the version file. If no name is supplied, the standard file
/path/to/102shows/version will be used

	Return type:	str [https://docs.python.org/3.4/library/stdtypes.html#str]

	Returns:	version string (as in the file))

color

	
class helpers.color.SmoothBlend(strip: drivers.LEDStrip)

	This class lets the user define a specific state of the strip (target_colors)
and then smoothly blends the current state over to the set state.

	
class BlendFunctions

	
Todo

Include blend pictures directly in documentation

An internal class which provides functions to blend between two colors by a parameter fade_progress
for fade_progress == 0 the function should return the start_color
for fade_progress == 1 the function should return the end_color

	
classmethod cubic_blend(start_color, end_color, fade_progress)

	cubic blend => see https://goo.gl/wZWm07

	Return type:	tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]

	
classmethod linear_blend(start_color, end_color, fade_progress)

	linear blend => see https://goo.gl/lG8RIW

	Return type:	tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]

	
classmethod parabolic_blend(start_color, end_color, fade_progress)

	quadratic blend => see https://goo.gl/hzeFb6

	Return type:	tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]

	
classmethod power_blend(power, start_color, end_color, fade_progress)

	blend two colors using a power function, the exponent is set via param power

	Return type:	tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]

	
SmoothBlend.blend(time_sec=2, blend_function=<bound method SmoothBlend.BlendFunctions.linear_blend of <class 'helpers.color.SmoothBlend.BlendFunctions'>>)

	blend the current LED state to the desired state

	
SmoothBlend.set_color_for_whole_strip(red, green, blue)

	set the same color for all LEDs in the strip

	
SmoothBlend.set_pixel(led_num, red, green, blue)

	set the desired state of a given pixel after the blending is finished

	
SmoothBlend.target_colors = None

	an array of float tuples

	
helpers.color.add_tuples(tuple1, tuple2)

	Add two tuples component-wise

	Parameters:	
	tuple1 (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – summand

	tuple2 (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – summand

	Returns:	sum

	
helpers.color.blend_whole_strip_to_color(strip, color, fadetime_sec=2)

	this name is pretty self-explanatory ;-)

	Parameters:	
	strip (LEDStrip) – LEDStrip object

	color (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – the color to blend two

	fadetime_sec (float [https://docs.python.org/3.4/library/functions.html#float]) – the time in seconds to blend in

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
helpers.color.grayscale_correction(lightness, max_in=255.0, max_out=255)

	Corrects the non-linear human perception of the led brightness according to the CIE 1931 standard.
This is commonly mistaken for gamma correction. [1]

CIE 1931 Lightness correction [2]

The human perception of brightness is not linear to the duty cycle of an LED.
The relation between the (perceived) lightness \(Y\)
and the (technical) lightness \(L^*\) was described by the CIE:

\begin{align}
 Y & = Y_{max} \cdot g((L^* + 16) / 116) \quad ,& \quad 0 \le L^* \le 100 \\

 \text{with} \quad g(t) & =
 \begin{cases}
 3 \cdot \delta^2 \cdot (t - \frac{4}{29}) & t \le \delta \\
 t^3 & t > \delta
 \end{cases}
 \quad ,& \quad \delta = \frac{6}{29}
\end{align}
For more efficient computation, these two formulas can be simplified to:

\[\begin{split}Y =
\begin{cases}
 L^* / 902.33 & L^* \le 8 \\
 ((L^* + 16) / 116)^3 & L^* > 8
\end{cases} \\
\\
0 \le Y \le 1 \qquad 0 \le L^* \le 100\end{split}\]

	[1]	For more information, read here: https://goo.gl/9Ji129

	[2]	formula from
Wikipedia [https://en.wikipedia.org/wiki/Lab_color_space#Reverse_transformation]

	Parameters:	
	lightness (float [https://docs.python.org/3.4/library/functions.html#float]) – linear brightness value between 0 and max_in

	max_in (float [https://docs.python.org/3.4/library/functions.html#float]) – maximum value for lightness

	max_out (int [https://docs.python.org/3.4/library/functions.html#int]) – maximum output integer value (255 for 8-bit LED drivers)

	Returns:	the correct PWM duty cycle for humans to see the desired lightness as integer

	
helpers.color.linear_dim(undimmed, factor)

	Multiply all components of undimmed with factor

	Parameters:	
	undimmed (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – the vector

	factor (float [https://docs.python.org/3.4/library/functions.html#float]) – the factor to multiply the components of the vector byy

	Return type:	tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]

	Returns:	resulting RGB color vector

	
helpers.color.wheel(wheel_pos)

	Get a color from a color wheel: Green -> Red -> Blue -> Green

	Parameters:	wheel_pos (float [https://docs.python.org/3.4/library/functions.html#float]) – numeric from 0 to 254

	Returns:	RGB color tuple

configparser

	
helpers.configparser.get_configuration(default_filename='defaults.yml', user_filename='config.yml')

	gets the current configuration, as specified by YAML files

	Parameters:	
	default_filename (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – name of the default settings file (relative to configparser.py)

	user_filename (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – name of the user settings file (relative to configparser.py)

	Return type:	AttrDict

	Returns:	settings tree

	
helpers.configparser.update_settings_tree(base, update)

	For all attributes in update override the defaults set in base
or add them to the tree, if they did not exist in base.

	Parameters:	
	base (AttrDict) – default config tree

	update (AttrDict) – “patch” for the default config tree

	Return type:	AttrDict

	Returns:	the updated tree

exceptions

see Exceptions (#fixme: link)

mqtt

A couple of helper functions (big surprise!) for MQTTControl

	
class helpers.mqtt.TopicAspect

	information you can get out of an MQTT topic (and on which path hierarchy they are)

	
helpers.mqtt.get_from_topic(hierarchy_level, topic)

	get the string on a specified hierarchy level

	Parameters:	
	hierarchy_level (int [https://docs.python.org/3.4/library/functions.html#int]) – integer level

	topic (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – string to be analyzed

	Return type:	str [https://docs.python.org/3.4/library/stdtypes.html#str]

	Returns:	part-string of the wanted level

	
helpers.mqtt.parse_json_safely(payload)

	parse a string as JSON object
logs failures as warnings

	Parameters:	payload (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – string to be parsed

	Return type:	dict [https://docs.python.org/3.4/library/stdtypes.html#dict]

	Returns:	parsed JSON object (as dict)

preprocessors

verify

Functions that validate input parameters and exceptions, raising
InvalidParameters exceptions if the input does not fit the requirements. #fixme: link to exception

	
helpers.verify.boolean(candidate, param_name=None)

	a boolean value: True or False

	Parameters:	
	candidate – the object to be tested

	param_name (Optional[str [https://docs.python.org/3.4/library/stdtypes.html#str]]) – name of the parameter (to be included in the error message)

	
helpers.verify.integer(candidate, param_name=None, minimum=None, maximum=None)

	

	Parameters:	
	candidate – the object to be tested

	param_name (Optional[str [https://docs.python.org/3.4/library/stdtypes.html#str]]) – name of the parameter (to be included in the error message)

	minimum (Optional[float [https://docs.python.org/3.4/library/functions.html#float]]) – minimum

	maximum (Optional[float [https://docs.python.org/3.4/library/functions.html#float]]) – maximum

	
helpers.verify.not_negative_integer(candidate, param_name=None)

	a not-negative integer => 0,1,2,3,...

	Parameters:	
	candidate – the object to be tested

	param_name (Optional[str [https://docs.python.org/3.4/library/stdtypes.html#str]]) – name of the parameter (to be included in the error message)

	
helpers.verify.not_negative_numeric(candidate, param_name=None)

	a not-negative number => 0 or above

	Parameters:	
	candidate – the object to be tested

	param_name (Optional[str [https://docs.python.org/3.4/library/stdtypes.html#str]]) – name of the parameter (to be included in the error message)

	
helpers.verify.numeric(candidate, param_name=None, minimum=None, maximum=None)

	number (between minimum and maximum)

	Parameters:	
	candidate – the object to be tested

	param_name (Optional[str [https://docs.python.org/3.4/library/stdtypes.html#str]]) – name of the parameter (to be included in the error message)

	minimum (Optional[float [https://docs.python.org/3.4/library/functions.html#float]]) – minimum (of a closed set)

	maximum (Optional[float [https://docs.python.org/3.4/library/functions.html#float]]) – maximum (of a closed set)

	
helpers.verify.positive_integer(candidate, param_name=None)

	a positive integer => greater than 0 => 1 or above

	Parameters:	
	candidate – the object to be tested

	param_name (Optional[str [https://docs.python.org/3.4/library/stdtypes.html#str]]) – name of the parameter (to be included in the error message)

	
helpers.verify.positive_numeric(candidate, param_name=None)

	a positive number => greater than 0

	Parameters:	
	candidate – the object to be tested

	param_name (Optional[str [https://docs.python.org/3.4/library/stdtypes.html#str]]) – name of the parameter (to be included in the error message)

	
helpers.verify.rgb_color_tuple(candidate, param_name=None)

	An RGB color tuple. It must contain three integer components between 0 and 255.

	Parameters:	
	candidate – the object to be tested

	param_name (Optional[str [https://docs.python.org/3.4/library/stdtypes.html#str]]) – name of the parameter (to be included in the error message)

Tests

Todo

write docstring for this module

lightshows

Overview

102shows offers a framework for writing and displaying lightshows.
lightshows includes the code that actually relies on this
and displays animations on an LED strip.

Templates

Todo

include link to controller

To make writing lightshows easy and convenient we introduced templates.
These provide the interfaces for the controller and generic functionalities.

Basically: The templates are there so that lightshow modules just have to
worry about the LED animations, and not about the backgrounds of 102shows

The base template

As the name says, this is the most basic template.
All lightshows (and all other templates) rely on this template.
It offers quite a lot:

	
	The interface to the controller:

	
	lightshows.base.Lightshow.name() returns the name of the lightshow

	
	lightshows.base.Lightshow.start() initializes the show process,

	starts the built-in MQTT client and then triggers the start of the animation

	lightshows.base.Lightshow.stop() can be called to gracefully end the show

	lightshows.base.Lightshow.name()

	
class lightshows.templates.base.Lightshow(strip: drivers.LEDStrip, parameters: dict)

	This class defines the interfaces and a few helper functions for lightshows.
It is highly recommended to use it as your base class when writing your own show.

	Parameters:	
	strip (LEDStrip) – A drivers.LEDStrip object representing your strip

	parameters (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – A dict [https://docs.python.org/3.4/library/stdtypes.html#dict] mapping parameter names (of the lightshow) to the parameter values,
for example:

parameters = {'example_rgb_color': (255,127,8),
 'an_arbitrary_fade_time_sec': 1.5}

	
class MQTTListener(lightshow)

	This class collects the functions that receive incoming MQTT messages
and parse them as parameter changes.

	
parse_message(client, userdata, msg)

	Function to be executed as on_message hook of the Paho MQTT client.
If the message commands a brightness or parameter change the corresponding
hook (set_brightness() or set_parameter()) is called.

Todo

	include link to the paho mqtt lib

	explain currently unknown parameters

	Parameters:	
	client – the calling client object

	userdata – no idea what this does.
This is a necessary argument but is not handled in any way in the function.

	msg – The object representing the incoming MQTT message

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
set_brightness(brightness)

	Limits the brightness value to the maximum brightness that is set in the configuration file,
then calls the strip driver’s drivers.LEDStrip.set_global_brightness() function

	Parameters:	brightness (float [https://docs.python.org/3.4/library/functions.html#float]) – float between 0.0 and 1.0

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
start_listening()

	If this method is called (e.g. by the show object), incoming MQTT messages will be parsed,
given they have the path $prefix/$sys_name/$show_name/$parameter
$parameter and the $payload will be given to
lightshow.templates.base.Lightshow.set_parameter()

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
stop_listening()

	Ends the connection to the MQTT broker.
Messages from the subscribed topics are not parsed anymore.

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
subscribe(client, userdata, flags, rc)

	Function to be executed as on_connect hook of the Paho MQTT client.
It subscribes to the MQTT paths for brightness changes and parameter changes for the show.

Todo

	include link to the paho mqtt lib

	explain currently unknown parameters

	Parameters:	
	client – the calling client object

	userdata – no idea what this does.
This is a necessary argument but is not handled in any way in the function.

	flags – no idea what this does.
This is a necessary argument but is not handled in any way in the function.

	rc – no idea what this does.
This is a necessary argument but is not handled in any way in the function.

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
Lightshow.apply_parameter_set(parameters)

	Applies a set of parameters to the show.

	Parameters:	parameters (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – Parameter JSON Object, represented as a Python dict [https://docs.python.org/3.4/library/stdtypes.html#dict]

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	Returns:	True if successful, False if not

	
Lightshow.check_runnable()

	
Todo

include official exception raise notice

Raise an exception (InvalidStrip, InvalidConf or InvalidParameters) if the show is not runnable

	
Lightshow.cleanup()

	This is called before the show gets terminated.
Lightshows can use it to clean up resources before their process is killed.

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
Lightshow.idle_forever(delay_sec=-1)

	Just does nothing and invokes drivers.LEDStrip.show() until the end of time
(or a call of stop())

	Parameters:	delay_sec (float [https://docs.python.org/3.4/library/functions.html#float]) – Time between two calls of drivers.LEDStrip.show()

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
Lightshow.init_parameters()

	Lightshows can inherit this to set their default parameters.
This function is called at initialization of a new show object.

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
Lightshow.logger = None

	The logger object this show will use for debug output

	
Lightshow.mqtt = None

	represents the MQTT connection for parsing parameter changes #FIXME: type annotation

	
Lightshow.name

	The name of the lightshow in lower-cases

	Return type:	str [https://docs.python.org/3.4/library/stdtypes.html#str]

	
Lightshow.p = None

	The object that stores all show parameters

	
Lightshow.register(parameter_name, default_val, verifier, args=None, kwargs=None, preprocessor=None)

	MQTT-settable parameters are stored in lightshows.templates.base.Lightshow.p.value.
Calling this function will register a new parameter and his verifier in
value and
verifier, so the parameter can be
set via MQTT and by the controller.

	Parameters:	
	parameter_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – name of the parameter. You access the parameter via self.p.value[parameter_name].

	default_val – initializer value of the parameter.
Note that this value will not be checked by the verifier function!

	verifier – a function that is called before the parameter is set via MQTT.
If it raises an InvalidParameters exception, the new value will not be set. #FIXLINK

	args (Optional[list [https://docs.python.org/3.4/library/stdtypes.html#list]]) – the verifier function will be called as verifier(new_value, param_name, *args, **kwargs)

	kwargs (Optional[dict [https://docs.python.org/3.4/library/stdtypes.html#dict]]) – the verifier function will be called via
verifier(new_value, param_name, *args, **kwargs)

	preprocessor – before the validation in set_parameter value = preprocessor(value) will be called

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
Lightshow.run()

	The “main” function of the show
(obviously this must be re-implemented in child classes)

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
Lightshow.set_parameter(param_name, value, send_mqtt_update=True)

	Take a parameter by name and new value and store it to p.value.

	Parameters:	
	param_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – name of the parameter to be stored

	value – new value of the parameter to be stored

	send_mqtt_update (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Send the updated parameter array to the MQTT current parameter path after update

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
Lightshow.sleep(time_sec)

	Does nothing (but refreshing the strip a few times) for time_sec seconds

	Parameters:	time_sec (float [https://docs.python.org/3.4/library/functions.html#float]) – duration of the break

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
Lightshow.start()

	invokes the run() method and after that synchronizes the shared buffer

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
Lightshow.stop(signum=None, frame=None)

	
Todo

include link for SIGINT

This should be called to stop the show with a graceful ending.
It guarantees that the last strip state is uploaded to the global inter-process buffer.
This method is called when SIGINT is sent to the show process.
The arguments have no influence on the function.

	Parameters:	
	signum – The integer-code of the signal sent to the show process.
This has no influence on how the function works.

	frame – #fixme

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
Lightshow.strip = None

	the object representing the LED strip (driver) #FIXME: type annotation

	
Lightshow.suicide()

	terminates its own process

	Return type:	None [https://docs.python.org/3.4/library/constants.html#None]

	
class lightshows.templates.base.LightshowParameters

	A collection of maps for the parameters which store their:

	current values

	preprocessor method references

	verifier method references

	
preprocessor = None

	maps the show parameter names to their preprocessor functions

	
value = None

	maps the show parameter names to their current values

	
verifier = None

	maps the show parameter names to their verifier functions

Exceptions

This module defines some exception classes specific to 102shows:

	
exception helpers.exceptions.DescriptiveException(value)

	This type of exception must contain a value (usually a string)
that is used as the string representation of the exception

	
exception helpers.exceptions.InvalidConf(value)

	Use if something in the configuration will not work
for what the user has chosen in the config file.

	
exception helpers.exceptions.InvalidParameters(value)

	Use when given parameters (for a lightshow) are not valid

	
static missing()

	
Todo

document!

	
static unknown()

	
Todo

document!

	
exception helpers.exceptions.InvalidStrip(value)

	Use if something is wrong with the strip.

For example: not enough LEDs to run the selected lightshow

 Python Module Index

 d |
 h |
 l

 		 	

 		
 d	

 	
 	
 drivers	
 LED Strip drivers

 		 	

 		
 h	

 	[image: -]
 	
 helpers	

 	
 	
 helpers.color	

 	
 	
 helpers.configparser	

 	
 	
 helpers.exceptions	

 	
 	
 helpers.mqtt	

 	
 	
 helpers.preprocessors	

 	
 	
 helpers.test_verify	

 	
 	
 helpers.verify	

 		 	

 		
 l	

 	[image: -]
 	
 lightshows	
 LED animations

 	
 	
 lightshows.solidcolor	

 	
 	
 lightshows.templates	
 useful templates for writing specific lightshows

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add_tuples() (in module helpers.color)

 	
 	APA102 (class in drivers.apa102)

 	apply_parameter_set() (lightshows.templates.base.Lightshow method)

B

 	
 	blend() (helpers.color.SmoothBlend method)

 	
 	blend_whole_strip_to_color() (in module helpers.color)

 	boolean() (in module helpers.verify)

C

 	
 	check_runnable() (lightshows.templates.base.Lightshow method)

 	cleanup() (lightshows.templates.base.Lightshow method)

 	clear_buffer() (drivers.apa102.APA102 method)

 	(drivers.LEDStrip method)

 	(drivers.dummy.DummyDriver method)

 	clear_strip() (drivers.apa102.APA102 method)

 	(drivers.LEDStrip method)

 	(drivers.dummy.DummyDriver method)

 	
 	close() (drivers.apa102.APA102 method)

 	(drivers.LEDStrip method)

 	color_bytes_to_tuple() (drivers.apa102.APA102 method)

 	(drivers.LEDStrip static method)

 	(drivers.dummy.DummyDriver method)

 	color_tuple_to_bytes() (drivers.apa102.APA102 method)

 	(drivers.LEDStrip static method)

 	(drivers.dummy.DummyDriver method)

 	cubic_blend() (helpers.color.SmoothBlend.BlendFunctions class method)

D

 	
 	DescriptiveException

 	
 	drivers (module)

 	DummyDriver (class in drivers.dummy)

F

 	
 	freeze() (drivers.apa102.APA102 method)

 	(drivers.LEDStrip method)

 	(drivers.dummy.DummyDriver method)

G

 	
 	get_configuration() (in module helpers.configparser)

 	get_from_topic() (in module helpers.mqtt)

 	get_logo() (in module helpers)

 	get_pixel() (drivers.apa102.APA102 method)

 	(drivers.LEDStrip method)

 	(drivers.dummy.DummyDriver method)

 	
 	get_version() (in module helpers)

 	grayscale_correction() (in module helpers.color)

H

 	
 	helpers (module)

 	helpers.color (module)

 	helpers.configparser (module)

 	helpers.exceptions (module)

 	
 	helpers.mqtt (module)

 	helpers.preprocessors (module)

 	helpers.test_verify (module)

 	helpers.verify (module)

I

 	
 	idle_forever() (lightshows.templates.base.Lightshow method)

 	init_parameters() (lightshows.templates.base.Lightshow method)

 	integer() (in module helpers.verify)

 	
 	InvalidConf

 	InvalidParameters

 	InvalidStrip

L

 	
 	led_prefix() (drivers.apa102.APA102 class method)

 	LEDStrip (class in drivers)

 	Lightshow (class in lightshows.templates.base)

 	Lightshow.MQTTListener (class in lightshows.templates.base)

 	LightshowParameters (class in lightshows.templates.base)

 	
 	lightshows (module)

 	lightshows.solidcolor (module)

 	lightshows.templates (module)

 	linear_blend() (helpers.color.SmoothBlend.BlendFunctions class method)

 	linear_dim() (in module helpers.color)

 	logger (lightshows.templates.base.Lightshow attribute)

M

 	
 	max_refresh_time_sec (drivers.apa102.APA102 attribute)

 	(drivers.LEDStrip attribute)

 	
 	missing() (helpers.exceptions.InvalidParameters static method)

 	mqtt (lightshows.templates.base.Lightshow attribute)

 	MQTTControl (class in mqttcontrol)

N

 	
 	name (lightshows.templates.base.Lightshow attribute)

 	not_negative_integer() (in module helpers.verify)

 	
 	not_negative_numeric() (in module helpers.verify)

 	notify_user() (mqttcontrol.MQTTControl method)

 	numeric() (in module helpers.verify)

O

 	
 	on_brightness_change() (drivers.apa102.APA102 method)

 	(drivers.LEDStrip method)

 	on_color_change() (drivers.apa102.APA102 method)

 	(drivers.LEDStrip method)

 	
 	on_connect() (mqttcontrol.MQTTControl method)

 	on_message() (mqttcontrol.MQTTControl method)

P

 	
 	p (lightshows.templates.base.Lightshow attribute)

 	parabolic_blend() (helpers.color.SmoothBlend.BlendFunctions class method)

 	parse_json_safely() (in module helpers.mqtt)

 	parse_message() (lightshows.templates.base.Lightshow.MQTTListener method)

 	
 	positive_integer() (in module helpers.verify)

 	positive_numeric() (in module helpers.verify)

 	power_blend() (helpers.color.SmoothBlend.BlendFunctions class method)

 	preprocessor (lightshows.templates.base.LightshowParameters attribute)

R

 	
 	register() (lightshows.templates.base.Lightshow method)

 	rgb_color_tuple() (in module helpers.verify)

 	rotate() (drivers.apa102.APA102 method)

 	(drivers.LEDStrip method)

 	(drivers.dummy.DummyDriver method)

 	
 	run() (lightshows.templates.base.Lightshow method)

 	(mqttcontrol.MQTTControl method)

S

 	
 	set_brightness() (drivers.apa102.APA102 method)

 	(drivers.LEDStrip method)

 	(drivers.dummy.DummyDriver method)

 	(lightshows.templates.base.Lightshow.MQTTListener method)

 	set_color_for_whole_strip() (helpers.color.SmoothBlend method)

 	set_global_brightness() (drivers.apa102.APA102 method)

 	(drivers.LEDStrip method)

 	(drivers.dummy.DummyDriver method)

 	set_global_brightness_percent() (drivers.apa102.APA102 method)

 	(drivers.LEDStrip method)

 	(drivers.dummy.DummyDriver method)

 	set_parameter() (lightshows.templates.base.Lightshow method)

 	set_pixel() (drivers.apa102.APA102 method)

 	(drivers.LEDStrip method)

 	(drivers.dummy.DummyDriver method)

 	(helpers.color.SmoothBlend method)

 	set_pixel_bytes() (drivers.apa102.APA102 method)

 	(drivers.LEDStrip method)

 	(drivers.dummy.DummyDriver method)

 	show() (drivers.apa102.APA102 method)

 	(drivers.LEDStrip method)

 	sleep() (lightshows.templates.base.Lightshow method)

 	
 	SmoothBlend (class in helpers.color)

 	SmoothBlend.BlendFunctions (class in helpers.color)

 	spi_end_frame() (drivers.apa102.APA102 static method)

 	spi_start_frame() (drivers.apa102.APA102 static method)

 	start() (lightshows.templates.base.Lightshow method)

 	start_listening() (lightshows.templates.base.Lightshow.MQTTListener method)

 	start_show() (mqttcontrol.MQTTControl method)

 	stop() (lightshows.templates.base.Lightshow method)

 	stop_controller() (mqttcontrol.MQTTControl method)

 	stop_listening() (lightshows.templates.base.Lightshow.MQTTListener method)

 	stop_running_show() (mqttcontrol.MQTTControl method)

 	stop_show() (mqttcontrol.MQTTControl method)

 	strip (lightshows.templates.base.Lightshow attribute)

 	subscribe() (lightshows.templates.base.Lightshow.MQTTListener method)

 	suicide() (lightshows.templates.base.Lightshow method)

 	sync_down() (drivers.apa102.APA102 method)

 	(drivers.LEDStrip method)

 	(drivers.dummy.DummyDriver method)

 	sync_up() (drivers.apa102.APA102 method)

 	(drivers.LEDStrip method)

 	(drivers.dummy.DummyDriver method)

 	synced_red_buffer (drivers.LEDStrip attribute)

T

 	
 	target_colors (helpers.color.SmoothBlend attribute)

 	
 	TopicAspect (class in helpers.mqtt)

U

 	
 	unfreeze() (drivers.apa102.APA102 method)

 	(drivers.LEDStrip method)

 	(drivers.dummy.DummyDriver method)

 	
 	unknown() (helpers.exceptions.InvalidParameters static method)

 	update_settings_tree() (in module helpers.configparser)

V

 	
 	value (lightshows.templates.base.LightshowParameters attribute)

 	
 	verifier (lightshows.templates.base.LightshowParameters attribute)

W

 	
 	wheel() (in module helpers.color)

 _static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Welcome to the 102shows documentation!

 		Using 102shows

 		Installation

 		MQTT broker

 		Server

 		Web UI

 		Configuration

 		Running

 		Server

 		Web UI

 		Supported LED chipsets

 		APA102 (aka Adafruit DotStar)

 		No LED Strip (Dummy Driver)

 		Developing for 102shows

 		MQTT

 		Paths

 		Switching a show

 		Global brightness

 		Show-specific parameters

 		Lightshows

 		Formal interface

 		Other templates

 		Developer Reference

 		mqttcontrol

 		drivers

 		Structure

 		Interface

 		helpers

 		Overview

 		color

 		configparser

 		exceptions

 		mqtt

 		preprocessors

 		verify

 		lightshows

 		Overview

 		Templates

 		Exceptions

